最近一直在读《java并发编程实践》,书是绝对的好书,翻译不能说差,也谈不上好,特别是第一部分的前面几章,有的地方翻译的南辕北辙了,还是要对照着英文版来看。我关注并发编程是从学习Erlang开始的,在多核来临的时代,有人说并发将是下一个10年的关键技术。java5之前的多线程编程很复杂,况且我也没有从事此类应用的开发,了解不多,而从jdk5引入了让人流口水的concurrent包之后,java的并发编程开始变的有趣起来。
   书中第6章以编写一个web server为例子,引出了几种不同版本的写法:单线程、多线程以及采用jdk5提供的线程池实现。我就用apache自带的ab工具测试了下各个版本的性能,在redhat9 p4 2g内存的机器上进行了测试。
ab -n 50000 -c 1000 http://localhost/index.html >benchmark
单线程模式,顺序性地处理每一个请求,50000并发很快就没有响应了,不参与比较了。再来看看我们自己写的多线程方式处理每个请求:
package net.rubyeye.concurrency.chapter6;
import java.io.BufferedReader;
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.net.InetAddress;
import java.net.ServerSocket;
import java.net.Socket;
public class ThreadPerTaskWebServer {
    public static void main(String[] args) throws IOException {
        ServerSocket server = new ServerSocket(80);
        while (true) {
            final Socket connection = server.accept();
            Runnable task = new Runnable() {
                public void run() {
                    try {
                        handleRequest(connection);
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
            };
            new Thread(task).start();
        }
    }
    public static void handleRequest(Socket socket) throws IOException {
        try {
            InetAddress client = socket.getInetAddress();
            // and print it to gui
            s(client.getHostName() + " connected to server.\n");
            // Read the http request from the client from the socket interface
            // into a buffer.
            BufferedReader input = new BufferedReader(new InputStreamReader(
                    socket.getInputStream()));
            // Prepare a outputstream from us to the client,
            // this will be used sending back our response
            // (header + requested file) to the client.
            DataOutputStream output = new DataOutputStream(socket
                    .getOutputStream());
            // as the name suggest this method handles the http request, see
            // further down.
            // abstraction rules
            http_handler(input, output);
            socket.close();
        } catch (Exception e) { // catch any errors, and print them
            s("\nError:" + e.getMessage());
        }
    } // go back in loop, wait for next request
    // our implementation of the hypertext transfer protocol
    // its very basic and stripped down
    private static void http_handler(BufferedReader input,
            DataOutputStream output) {
        int method = 0; // 1 get, 2 head, 0 not supported
        String http = new String(); // a bunch of strings to hold
        String path = new String(); // the various things, what http v, what
        // path,
        String file = new String(); // what file
        String user_agent = new String(); // what user_agent
        try {
            // This is the two types of request we can handle
            // GET /index.html HTTP/1.0
            // HEAD /index.html HTTP/1.0
            String tmp = input.readLine(); // read from the stream
            String tmp2 = new String(tmp);
            tmp.toUpperCase(); // convert it to uppercase
            if (tmp.startsWith("GET")) { // compare it is it GET
                method = 1;
            } // if we set it to method 1
            if (tmp.startsWith("HEAD")) { // same here is it HEAD
                method = 2;
            } // set method to 2
            if (method == 0) { // not supported
                try {
                    output.writeBytes(construct_http_header(501, 0));
                    output.close();
                    return;
                } catch (Exception e3) { // if some error happened catch it
                    s("error:" + e3.getMessage());
                } // and display error
            }
            // }
            // tmp contains "GET /index.html HTTP/1.0 
 ."
."
            // find first space
            // find next space
            // copy whats between minus slash, then you get "index.html"
            // it's a bit of dirty code, but bear with me
            int start = 0;
            int end = 0;
            for (int a = 0; a < tmp2.length(); a++) {
                if (tmp2.charAt(a) == ' ' && start != 0) {
                    end = a;
                    break;
                }
                if (tmp2.charAt(a) == ' ' && start == 0) {
                    start = a;
                }
            }
            path = tmp2.substring(start + 2, end); // fill in the path
        } catch (Exception e) {
            s("errorr" + e.getMessage());
        } // catch any exception
        // path do now have the filename to what to the file it wants to open
        s("\nClient requested:" + new File(path).getAbsolutePath() + "\n");
        FileInputStream requestedfile = null;
        try {
            // NOTE that there are several security consideration when passing
            // the untrusted string "path" to FileInputStream.
            // You can access all files the current user has read access to!!!
            // current user is the user running the javaprogram.
            // you can do this by passing "../" in the url or specify absoulute
            // path
            // or change drive (win)
            // try to open the file,
            requestedfile = new FileInputStream(path);
        } catch (Exception e) {
            try {
                // if you could not open the file send a 404
                output.writeBytes(construct_http_header(404, 0));
                // close the stream
                output.close();
            } catch (Exception e2) {
            }
            ;
            s("error" + e.getMessage());
        } // print error to gui
        // happy day scenario
        try {
            int type_is = 0;
            // find out what the filename ends with,
            // so you can construct a the right content type
            if (path.endsWith(".zip") || path.endsWith(".exe")
                    || path.endsWith(".tar")) {
                type_is = 3;
            }
            if (path.endsWith(".jpg") || path.endsWith(".jpeg")) {
                type_is = 1;
            }
            if (path.endsWith(".gif")) {
                type_is = 2;
                // write out the header, 200 ->everything is ok we are all
                // happy.
            }
            output.writeBytes(construct_http_header(200, 5));
            // if it was a HEAD request, we don't print any BODY
            if (method == 1) { // 1 is GET 2 is head and skips the body
                while (true) {
                    // read the file from filestream, and print out through the
                    // client-outputstream on a byte per byte base.
                    int b = requestedfile.read();
                    if (b == -1) {
                        break; // end of file
                    }
                    output.write(b);
                }
            }
            // clean up the files, close open handles
            output.close();
            requestedfile.close();
        }
        catch (Exception e) {
        }
    }
    private static void s(String s) {
    //    System.out.println(s);
    }
    // this method makes the HTTP header for the response
    // the headers job is to tell the browser the result of the request
    // among if it was successful or not.
    private static String construct_http_header(int return_code, int file_type) {
        String s = "HTTP/1.0 ";
        // you probably have seen these if you have been surfing the web a while
        switch (return_code) {
        case 200:
            s = s + "200 OK";
            break;
        case 400:
            s = s + "400 Bad Request";
            break;
        case 403:
            s = s + "403 Forbidden";
            break;
        case 404:
            s = s + "404 Not Found";
            break;
        case 500:
            s = s + "500 Internal Server Error";
            break;
        case 501:
            s = s + "501 Not Implemented";
            break;
        }
        s = s + "\r\n"; // other header fields,
        s = s + "Connection: close\r\n"; // we can't handle persistent
        // connections
        s = s + "Server: SimpleHTTPtutorial v0\r\n"; // server name
        // Construct the right Content-Type for the header.
        // This is so the browser knows what to do with the
        // file, you may know the browser dosen't look on the file
        // extension, it is the servers job to let the browser know
        // what kind of file is being transmitted. You may have experienced
        // if the server is miss configured it may result in
        // pictures displayed as text!
        switch (file_type) {
        // plenty of types for you to fill in
        case 0:
            break;
        case 1:
            s = s + "Content-Type: image/jpeg\r\n";
            break;
        case 2:
            s = s + "Content-Type: image/gif\r\n";
        case 3:
            s = s + "Content-Type: application/x-zip-compressed\r\n";
        default:
            s = s + "Content-Type: text/html\r\n";
            break;
        }
        // //so on and so on

        s = s + "\r\n"; // this marks the end of the httpheader
        // and the start of the body
        // ok return our newly created header!
        return s;
    }
}
 
测试结果如下:
Concurrency Level:      1000
Time taken for tests:   111.869356 seconds
Complete requests:      50000
Failed requests:        0
Write errors:           0
Total transferred:      4950000 bytes
HTML transferred:       250000 bytes
Requests per second:    446.95 [#/sec] (mean)
Time per request:       2237.387 [ms] (mean)
Time per request:       2.237 [ms] (mean, across all concurrent requests)
Transfer rate:          43.20 [Kbytes/sec] received
修改下上面的程序,采用jdk5提供的线程池:
    private static final int NTHREADS = 5;
    private static Executor exec;
    public static void main(String[] args) throws IOException {
        ServerSocket server = new ServerSocket(80);
        if (args.length == 0)
            exec = Executors.newFixedThreadPool(NTHREADS);
        else
            exec = Executors.newFixedThreadPool(Integer.parseInt(args[0]));
        while (true) {
            final Socket connection = server.accept();
            Runnable task = new Runnable() {
                public void run() {
                    try {
                        handleRequest(connection);
                    } catch (IOException e) {
                        e.printStackTrace();
                    }
                }
            };
            exec.execute(task);
        }
    }
默认线程池大小取5,后经过反复测试,线程池大小在5左右,测试结果达到最佳。测试采用线程池的结果如下:
Concurrency Level:      1000
Time taken for tests:   51.648142 seconds
Complete requests:      50000
Failed requests:        0
Write errors:           0
Total transferred:      4978908 bytes
HTML transferred:       251460 bytes
Requests per second:    968.09 [#/sec] (mean)
Time per request:       1032.963 [ms] (mean)
Time per request:       1.033 [ms] (mean, across all concurrent requests)
Transfer rate:          94.14 [Kbytes/sec] received
与上面结果一比较,牛人写的线程池终究是大大不一样。当连接数增加到10W以上,两个版本之间的性能差异就更明显了。这里采用的是固定线程池,如果采用缓冲线程池会怎么样呢?newFixedThreadPool改为newCachedThreadPool方法,测试可以发现结果与固定线程池的最佳结果相似。CachedThreadPool更适合此处短连接、高并发的场景。后来,我想Erlang写一个简单的web server,性能上会不会超过采用线程池的这个版本呢?试试:
%% httpd.erl - MicroHttpd 
-module(httpd).
-export([start/0,start/1,start/2,process/2]).
-import(regexp,[split/2]). 
-define(defPort,80). 
-define(docRoot,"."). 
start() -> start(?defPort,?docRoot).
start(Port) -> start(Port,?docRoot). 
start(Port,DocRoot) -> 
      case gen_tcp:listen(Port, [binary,{packet, 0},{active, false}]) of 
          {ok, LSock}     -> 
               server_loop(LSock,DocRoot);   
          {error, Reason}     -> 
              exit({Port,Reason}) 
      end.
      %% main server loop - wait for next connection, spawn child to process it
      server_loop(LSock,DocRoot) ->   
          case gen_tcp:accept(LSock) of   
                    {ok, Sock}     ->  
                          spawn(?MODULE,process,[Sock,DocRoot]),  
                          server_loop(LSock,DocRoot);    
                  {error, Reason}     ->    
          exit({accept,Reason})  
  end.
  %% process current connection
process(Sock,DocRoot) ->  
      Req = do_recv(Sock),  
      {ok,[Cmd|[Name|[Vers|_]]]} = split(Req,"[ \r\n]"),  
      FileName = DocRoot ++ Name, 
      LogReq = Cmd ++ " " ++ Name ++ " " ++ Vers, 
      Resp = case file:read_file(FileName) of  
                {ok, Data}     ->    
                     io:format("~p ~p ok~n",[LogReq,FileName]), 
                    Data;   
                {error, Reason}     ->   
                     io:format("~p ~p failed ~p~n",[LogReq,FileName,Reason]),   
                   error_response(LogReq,file:format_error(Reason))  
         end, 
        do_send(Sock,Resp),
        gen_tcp:close(Sock). 
        %% construct HTML for failure message 
error_response(LogReq,Reason) ->  
  "<html><head><title>Request Failed</title></head><body>\n" ++
      "<h1>Request Failed</h1>\n" ++ 
      "Your request to " ++ LogReq ++ 
    " failed due to: " ++ Reason ++  "\n</body></html>\n"
.
      %% send a line of text to the 
do_send(Sock,Msg) ->  
      case gen_tcp:send(Sock, Msg) of  
      ok        ->
          ok;  
      {error, Reason}     -> 
          exit(Reason)  
  end. 
          %% receive data from the socket
do_recv(Sock) ->  
      case gen_tcp:recv(Sock, 0) of    
           {ok, Bin}     -> 
                  binary_to_list(Bin);   
           {error, closed}     -> 
                  exit(closed);    
           {error, Reason}     -> 
                  exit(Reason)  
  end.
执行:
 erl -noshell +P 5000 -s httpd start
+P参数是将系统允许创建的process数目增加到50000,默认是3万多。测试结果:
Concurrency Level:      1000
Time taken for tests:   106.35735 seconds
Complete requests:      50000
Failed requests:        0
Write errors:           0
Total transferred:      250000 bytes
HTML transferred:       0 bytes
Requests per second:    471.54 [#/sec] (mean)
Time per request:       2120.715 [ms] (mean)
Time per request:       2.121 [ms] (mean, across all concurrent requests)
Transfer rate:          2.30 [Kbytes/sec] received
    结果让人大失所望,这个结果与我们自己写的多线程java版本差不多,与采用线程池的版本就差多了,减少并发的话,倒是比java版本的快点。侧面验证了
这个讨论的结论:
erlang的优势就是高并发而非高性能。当然,这三者都比不上C语言写的多线程web server。测试了unix/linux编程实践中的例子,速度是远远超过前三者,不过支持的并发有限,因为系统创建的线程在超过5000时就崩溃了。如果采用jdk5进行开发,应当充分利用新的并发包,可惜我们公司还停留在1.4。