摘至 
落雪的梦想
1           泛型(Generic)
1.1          说明
增强了java的类型安全,可以在编译期间对容器内的对象进行类型检查,在运行期不必进行类型的转换。而在j2se5之前必须在运行期动态进行容器内对象的检查及转换
减少含糊的容器,可以定义什么类型的数据放入容器
ArrayList<Integer> listOfIntegers; // <TYPE_NAME> is new to the syntax
Integer integerObject;
listOfIntegers = new ArrayList<Integer>(); // <TYPE_NAME> is new to the syntax
listOfIntegers.add(new Integer(10)); // 只能是Integer类型
integerObject = listOfIntegers.get(0); // 取出对象不需要转换
1.2          用法
声明及实例化泛型类:
HashMap<String,Float> hm = new HashMap<String,Float>();
//不能使用原始类型
GenList<int> nList = new GenList<int>();  //编译错误
J2SE 5.0目前不支持原始类型作为类型参数(type parameter)
定义泛型接口:
public interface GenInterface<T> {
    void func(T t);
}
定义泛型类:
public class ArrayList<ItemType> { ... }
public class GenMap<T, V> { ... }
例1:
public class MyList<Element> extends LinkedList<Element>
{
       public void swap(int i, int j)
       {
              Element temp = this.get(i);
              this.set(i, this.get(j));
              this.set(j, temp);
       }
       
       public static void main(String[] args)
       {
              MyList<String> list = new MyList<String>();
              list.add("hi");
              list.add("andy");
              System.out.println(list.get(0) + " " + list.get(1));
              list.swap(0,1);
              System.out.println(list.get(0) + " " + list.get(1));
       }
}
例2:
public class GenList <T>{
       private T[] elements;
       private int size = 0;
       private int length = 0;
 
       public GenList(int size) {
              elements = (T[])new Object[size];
              this.size = size;
       }
 
       public T get(int i) {
              if (i < length) {
                     return elements[i];
              }
              return null;
       }
       
       public void add(T e) {
              if (length < size - 1)
                     elements[length++] = e;
       }
}
泛型方法:
public class TestGenerics{
       public <T> String getString(T obj) { //实现了一个泛型方法
              return obj.toString();
       }
       
       public static void main(String [] args){
              TestGenerics t = new TestGenerics();
              String s = "Hello";
              Integer i = 100;
              System.out.println(t.getString(s));
              System.out.println(t.getString(i));
              }
}
1.3          受限泛型
  受限泛型是指类型参数的取值范围是受到限制的. extends关键字不仅仅可以用来声明类的继承关系, 也可以用来声明类型参数(type parameter)的受限关系.例如, 我们只需要一个存放数字的列表, 包括整数(Long, Integer, Short), 实数(Double, Float), 不能用来存放其他类型, 例如字符串(String), 也就是说, 要把类型参数T的取值泛型限制在Number极其子类中.在这种情况下, 我们就可以使用extends关键字把类型参数(type parameter)限制为数字
示例
public class Limited<T extends Number> {
       public static void main(String[] args) {
              Limited<Integer> number;   //正确
              Limited<String> str;       //编译错误
       }
}
1.4          泛型与异常
类型参数在catch块中不允许出现,但是能用在方法的throws之后。例:
import java.io.*;
interface Executor<E extends Exception> {
       void execute() throws E;
}
 
public class GenericExceptionTest {
       public static void main(String args[]) {
              try {
                     Executor<IOException> e = new Executor<IOException>() {
                            public void execute() throws IOException{
                                   // code here that may throw an
                                   // IOException or a subtype of
                                   // IOException
                            }
                            };
                     e.execute();
              } catch(IOException ioe) {
                     System.out.println("IOException: " + ioe);
                     ioe.printStackTrace();
              }
       }
}
1.5          泛型的通配符"?"
"?"可以用来代替任何类型, 例如使用通配符来实现print方法。
public static void print(GenList<?> list) {})
1.6          泛型的一些局限型
不能实例化泛型
T t = new T(); //error
不能实例化泛型类型的数组
T[] ts= new T[10];   //编译错误
不能实例化泛型参数数
Pair<String>[] table = new Pair<String>(10); // ERROR
类的静态变量不能声明为类型参数类型
public class GenClass<T> {
     private static T t;    //编译错误
}
泛型类不能继承自Throwable以及其子类
public GenExpection<T> extends Exception{}    //编译错误 
不能用于基础类型int等
Pair<double> //error
Pair<Double> //right
2           增强循环(Enhanced for Loop)
旧的循环
LinkedList list = new LinkedList();              
list.add("Hi");
list.add("everyone!");
list.add("Was");
list.add("the");
list.add("pizza");
list.add("good?");           
for (int i = 0; i < list.size(); i++)
       System.out.println((String) list.get(i));
//或者用以下循环
//for(Iterator iter = list.iterator(); iter.hasNext(); ) {
//Integer stringObject = (String)iter.next();
// ... more statements to use stringObject... 
//}
新的循环
LinkedList<String> list = new LinkedList<String>();          
list.add("Hi");
list.add("everyone!");
list.add("Was");
list.add("the");
list.add("pizza");
list.add("good?");           
for (String s : list)
       System.out.println(s);
很清晰、方便,一看便知其用法
3           可变参数(Variable Arguments)
实现了更灵活的方法参数传入方式,System.out.printf是个很好的例子
用法:void test(Object … args)
一个很容易理解的例子
public static int add(int ... args){
       int total = 0;    
       for (int i = 0; i < args.length; i++)
              total += args[i];      
       return total;
}
public static void main(String[] args){
       int a;
       a = Varargs.add(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
       System.out.println(a);
}
4           自动实现装箱和解箱操作(Boxing/Unboxing Conversions)
说明:实现了基本类型与外覆类之间的隐式转换。基本类型至外覆类的转换称为装箱,外覆类至基本类型的转换为解箱。这些类包括
Primitive Type     Reference Type
boolean           Boolean
byte              Byte
char              Character
short             Short
int               Integer
long              Long
float              Float
double            Double
例如,旧的实现方式
Integer intObject;
int intPrimitive;
ArrayList arrayList = new ArrayList();
intPrimitive = 11;
intObject = new Integer(intPrimitive);
arrayList.put(intObject); // 不能放入int类型,只能使Integer
新的实现方式
int intPrimitive;
ArrayList arrayList = new ArrayList();
intPrimitive = 11;
//在这里intPrimitive被自动的转换为Integer类型
arrayList.put(intPrimitive);
5           静态导入(Static Imports)
很简单的东西,看一个例子:
没有静态导入
Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));
有了静态导入
import static java.lang.Math.*;
sqrt(pow(x, 2) + pow(y, 2));
 
其中import static java.lang.Math.*;就是静态导入的语法,它的意思是导入Math类中的所有static方法和属性。这样我们在使用这些方法和属性时就不必写类名。
需要注意的是默认包无法用静态导入,另外如果导入的类中有重复的方法和属性则需要写出类名,否则编译时无法通过。
6          枚举类(Enumeration Classes)
用法:public enum Name {types, ….}
简单的例子:
public enum Colors {Red, Yellow, Blue, Orange, Green, Purple, Brown, Black}
public static void main(String[] args){
    Colors myColor = Colors.Red;
    System.out.println(myColor);
}
又一个简单例子:
import java.util.*;
enum OperatingSystems {windows, unix, linux, macintosh}
public class EnumExample1 {
    public static void main(String args[])  {
        OperatingSystems os;
        os = OperatingSystems.windows;
        switch(os) {
            case windows:
                System.out.println(“You chose Windows!”);
                break;
            case unix:
                System.out.println(“You chose Unix!”);
                break;
            case linux:
                System.out.println(“You chose Linux!”);
                break;
            case macintosh:
                System.out.println(“You chose Macintosh!”);
                break;
            default:
                System.out.println(“I don’t know your OS.”);
                break;
        }
    }
}
应运enum简写的例子:
import java.util.*;
 
public class EnumTest
{
   public static void main(String[] args)
   {
      Scanner in = new Scanner(System.in);
      System.out.print("Enter a size: (SMALL, MEDIUM, LARGE, EXTRA_LARGE) ");
      String input = in.next().toUpperCase();
      Size size = Enum.valueOf(Size.class, input);
      System.out.println("size=" + size);
      System.out.println("abbreviation=" + size.getAbbreviation());
      if (size == Size.EXTRA_LARGE)
         System.out.println("Good job--you paid attention to the _.");
   }
}
 
enum Size
{
   SMALL("S"), MEDIUM("M"), LARGE("L"), EXTRA_LARGE("XL");
 
   private Size(String abbreviation) { this.abbreviation = abbreviation; }
   public String getAbbreviation() { return abbreviation; }
 
   private String abbreviation;
}
enum类中拥有方法的一个例子:
enum ProgramFlags {
    showErrors(0x01),
    includeFileOutput(0x02),
    useAlternateProcessor(0x04);
    private int bit;
    ProgramFlags(int bitNumber) {
        bit = bitNumber;
    }
    public int getBitNumber()   {
        return(bit);
    }
}
public class EnumBitmapExample {
    public static void main(String args[])  {
        ProgramFlags flag = ProgramFlags.showErrors;
        System.out.println(“Flag selected is: “ +
        flag.ordinal() +
        “ which is “ +
        flag.name());
    }
}
7          元数据(Meta data)
请参考
http://www-900.ibm.com/developerWorks/cn/java/j-annotate1/
http://www-900.ibm.com/developerworks/cn/java/j-annotate2.shtml
8          Building Strings(StringBuilder类)
在JDK5.0中引入了StringBuilder类,该类的方法不是同步(synchronized)的,这使得它比StringBuffer更加轻量级和有效。
9          控制台输入(Console Input)
在JDK5.0之前我们只能通过JOptionPane.showInputDialog进行输入,但在5.0中我们可以通过类Scanner在控制台进行输入操作
    例如在1.4中的输入
    String input = JOptionPane.showInputDialog(prompt);
int n = Integer.parseInt(input);
double x = Double.parseDouble(input);
s = input;
在5.0中我们可以
Scanner in = new Scanner(System.in);
System.out.print(prompt);
int n = in.nextInt();
double x = in.nextDouble();
String s = in.nextLine();
10      Covariant Return Types(不晓得怎么翻译)
JDK5之前我们覆盖一个方法时我们无法改变被方法的返回类型,但在JDK5中我们可以改变它
例如1.4中我们只能
public Object clone() { ... }
...
Employee cloned = (Employee) e.clone();
但是在5.0中我们可以改变返回类型为Employee
public Employee clone() { ... }
...
Employee cloned = e.clone();
11      格式化I/O(Formatted I/O)
增加了类似C的格式化输入输出,简单的例子:
public class TestFormat{
    public static void main(String[] args){
        int a = 150000, b = 10;
        float c = 5.0101f, d = 3.14f;
        
        System.out.printf("%4d %4d%n", a, b);
        System.out.printf("%x %x%n", a, b);
        System.out.printf("%3.2f %1.1f%n", c, d);
        System.out.printf("%1.3e %1.3e%n", c, d*100);
    }
}
输出结果为:
150000   10
249f0 a
5.01 3.1
5.010e+00 3.140e+02
下面是一些格式化参数说明(摘自Core Java 2 Volume I - Fundamentals, Seventh Edition)
Table 3-5. Conversions for printf
| Conversion Character | Type | Example | 
| d | Decimal integer | 159 | 
| x | Hexadecimal integer | 9f | 
| o | Octal integer | 237 | 
| f | Fixed-point floating-point | 15.9 | 
| e | Exponential floating-point | 1.59E+01 | 
| g | General floating-point (the shorter of e and f) |   | 
| a | Hexadecimal floating point | 0x1.fccdp3 | 
| s | String | Hello | 
| c | Character | H | 
| b | Boolean | TRUE | 
| h | Hash code | 42628b2 | 
| tx | Date and time | See Table 3-7 | 
| % | The percent symbol | % | 
| n | The platform-dependent line separator |   | 
 
Table 3-7. Date and Time Conversion Characters
| Conversion Character | Type | Example | 
| C | Complete date and time | Mon Feb 09 18:05:19 PST 2004 | 
| F | ISO 8601 date | 2004-02-09 | 
| D | U.S. formatted date (month/day/year) | 02/09/2004 | 
| T | 24-hour time | 18:05:19 | 
| r | 12-hour time | 06:05:19 pm | 
| R | 24-hour time, no seconds | 18:05 | 
| Y | Four-digit year (with leading zeroes) | 2004 | 
| y | Last two digits of the year (with leading zeroes) | 04 | 
| C | First two digits of the year (with leading zeroes) | 20 | 
| B | Full month name | February | 
| b or h | Abbreviated month name | Feb | 
| m | Two-digit month (with leading zeroes) | 02 | 
| d | Two-digit day (with leading zeroes) | 09 | 
| e | Two-digit day (without leading zeroes) | 9 | 
| A | Full weekday name | Monday | 
| a | Abbreviated weekday name | Mon | 
| j | Three-digit day of year (with leading zeroes), between 001 and 366 | 069 | 
| H | Two-digit hour (with leading zeroes), between 00 and 23 | 18 | 
| k | Two-digit hour (without leading zeroes), between 0 and 23 | 18 | 
| I | Two-digit hour (with leading zeroes), between 01 and 12 | 06 | 
| l | Two-digit hour (without leading zeroes), between 1 and 12 | 6 | 
| M | Two-digit minutes (with leading zeroes) | 05 | 
| S | Two-digit seconds (with leading zeroes) | 19 | 
| L | Three-digit milliseconds (with leading zeroes) | 047 | 
| N | Nine-digit nanoseconds (with leading zeroes) | 047000000 | 
| P | Uppercase morning or afternoon marker | PM | 
| p | Lowercase morning or afternoon marker | pm | 
| z | RFC 822 numeric offset from GMT | -0800 | 
| Z | Time zone | PST | 
| s | Seconds since 1970-01-01 00:00:00 GMT | 1078884319 | 
| E | Milliseconds since 1970-01-01 00:00:00 GMT | 1078884319047 | 
 
Table 3-6. Flags for printf
| Flag | Purpose | Example | 
| + | Prints sign for positive and negative numbers | +3333.33 | 
| space | Adds a space before positive numbers | | 3333.33| | 
| 0 | Adds leading zeroes | 003333.33 | 
| - | Left-justifies field | |3333.33 | | 
| ( | Encloses negative number in parentheses | (3333.33) | 
| , | Adds group separators | 3,333.33 | 
| # (for f format) | Always includes a decimal point | 3,333. | 
| # (for x or o format) | Adds 0x or 0 prefix | 0xcafe | 
| ^ | Converts to upper case | 0XCAFE | 
| $ | Specifies the index of the argument to be formatted; for example, %1$d %1$x prints the first argument in decimal and hexadecimal | 159 9F | 
| <  | Formats the same value as the previous specification; for example, %d %<x prints the same number in decimal and hexadecimal |   | 
 
这里是一些简单的介绍,更详细的说明请参考:
Core Java 2 Volume I - Fundamentals, Seventh Edition
Core Java 2 Volume II - Advanced Features, Seventh Edition
里面都有一些很精彩的描述,中文名称就是《Java核心技术》。只有第七版才有J2SE5.0的介绍,但是第七版好像还没有中文版。本文还参考了Professional Java JDK - 5th Edition.