posts - 195, comments - 34, trackbacks - 0, articles - 1


-------------------start of 1
板书:
了解公司
去公司网站对其了解
去搜索引擎中了解对公司的评价
网上搜公司的人员,和他们聊天来了解
去IT公司速查手册查对公司的评价(如深圳软媒)
珠三角求职注意事项:深圳、广州、东莞。。。
简历
把自己的简历以纯文本的形式贴在邮件里,同时以Word文档(低版本)加在附件中。附件千万不能有病毒。
写简历的基本原则:简历是向用人单位推荐你、帮助用人单位了解你的一个工具!它不是公文流程化的表格,不是履历

表。不要什么都写。
要根据应聘职位的职位描述(Job Description)来个性化自己的简历,不要所有的职位都用一个简历,这是大忌,貌似

省事,实则大大降低了成功率。
简历中的项目经历尽量不要写:图书管理系统、网上商店之类的,看的头都疼了,第一反应是反感。不能跟别人雷同!

!!
简历注意事项
控制在两页之内
什么刀枪跟棍棒,都耍得有模有样,什么兵器最喜欢,双截棍柔中带刚。不要C、Java、C#、php、linux都懂!不要就是

一句:精通java就ok了,你用java写过什么?做过什么?有什么认识?
尽量压缩政治面貌、小学中学、大学获奖证书、小学三好学生等用人单位不关心的内容。
项目经历不要写太多,每个项目控制在5行左右,要重点突出项目人数、耗时、功能、系统架构等信息。突出:我在项目

做了什么!我不是打杂的,我不是端茶的。
如果和同学一起去应聘,不要两个人的简历一样
简历注意事项
可以多突出自己的特色,跟别人区隔开。简历上写的一定要经得起拷问(端茶倒水的),没把握的不要乱写,反感。面

试官一般都会按照就简历上写的进行提问:“看到你简历上写的。。。我想问你下你对。。。的看法”。
简历不用弄的太花哨,搞太高档的纸。面试官看的是内容,而不是纸!
人才库=垃圾桶

 

---------------------end of 1----------------------------------

 

-------------start of 2--------------
板书:
先介绍自己
禁忌的回答:我都写到简历里边了;我出生在陕北一个小山村,我有三个弟弟,我妈身体不好。。。;
无关的事情不要超过十几秒,因为简单介绍自己的时间最多2分钟。很快的将重点话题转到与工作有关的技能和经验上来


首先要把简历中写的总结一下(概述,不要全盘背出来),然后再以口语化的方式谈谈与这个工作、软件开发相关的话

题。
多主动说,不要总等着考官提问,那样会被动,但是也不能抢话说。聊天的效果!!和考官处于平等的地位。
当话说完了的时候要及时说“这就是我的看法。”,千万不能与主考官面面相觑。
说话不用太快,说话要稍微慢于思维,否则说话就不连贯了。

常见面试问题:
1、你的优点是什么,你的缺点是什么?
禁忌回答:我的优点是没有缺点(找抽!)
优点要讲与工作相关的,不要说“我篮球打得好”,不要吹的太厉害;谈优点的时候不能枚举形容词,要举实例。
缺点要是那种可以容忍的或者大家都有的小缺点,比如“当我注意力集中在工作上的时候,容易忽略别人说的话”(某

种程度来讲是优点);“当事情比较多的时候我会忘记一些事项,造成工作疏忽”。谈缺点的时候还要提到自己是怎么

改的“我随身带着笔记本,记下要做的事情,这样容易忘记事情的毛病已经改了很多了”

2、你还有什么问题吗?
不能答“没有了”,这说明你对这个工作根本没放在心上,也不能问太敏感的问题。要让别人感觉你是来做事业的,而

不是来找糊口的饭碗。不要问太多的待遇、补助、伙食、几个老板、公司销售额之类的问题,多关心公司的业务、产品

、发展以及个人进入公司以后的问题等等。问剩下的半年时间我该学些什么?
你为什么要来我们公司?不要回答“你们公司给的钱多”、“我看到了你们的招聘启示”。参考回答“我以前就对**有

了解,**是。。。,所以我一直向往在**工作,也希望能在这个行业中与**共同成长。”

3、你能说一下你的职业发展规划吗?
不要说“2年内成为技术骨干,5年内称为项目经理,8年内自己创业。。。”之类的。参考解答“我有非常强的工作能力

和积极性,而且我相信我一定能够为公司创造越来越多的价值,从而个人的能力也得到提升,由于我工作经验还是有限

的,而且对IT行业的发展也有待于逐步加深了解,所以我希望在初期能够服从公司的工作安排,完成公司交给公司的任

务,相信随着我经验的增长,我会对自己的职业发展规划更加明确,今后无论是做技术专家、业务专家还是管理人员,

我都能够找到适合自己发展的道路,与公司共同成长!”愿意在你这干一辈子。

4、你希望的月薪是多少?
这个问题很难回答,而且不同的面试官也有不同的喜好。不过总的原则是首先不要就月薪问题进行无意义的争论“你们

怎么能才给三千呀,我同学都四千,三千还不够在北京生存的呢,我还有八十岁的老母。。。”,而是说自己的优势、

对公司的价值。“我期望的月薪是四千,不过我知道每个公司都有自己的薪酬体系结构,我也充分尊重公司在考虑我个

人能力的基础上按照公司的规定给予我的报酬”。着眼发展!

 

1、简单介绍自己时:姓名专业,然后是专业相关的。谈到工作上和以口语话的方式聊一聊。


要主动的和考官聊,要主动的出击不能应对呀。可以互动,这样效果更好,也可以启发自己。聊天的效果最好。不能抢

话,一定要让人把话说完。陈述看法。要有个总结,这就是我的看法。说完了就说完了。一些和人交流的基本功。

说话不要快。快了容易出错。


你的优点是什么?缺点是什么?讲与工作相关的,不是谈别的。这个才是关键点。

你还有什么问题吗?这个工作要放在心上,对企业了解吗?对职业了解吗?不能问敏感的问题。要感觉是做事业的。

在这半年时间要学习些什么?******

你为什么来我们公司???以前就公司有所了解,


对自己的职业规划是不是明确。是不是和公司共同发展。??为公司创造价值,对IT行业的还有待了解,


与公司共同成长。


创业的人不安稳。



板书:

纸上写代码很土吗?
面试时的Code题通常有难度,有些题目就是想看你在遇到困难问题时候的应对能力。不要以答不对而懊恼

一时找不到解决方案的话,也不能看着天花板面无表情的发呆,而是要嘴里描述你的想法和思路。编写代码过程中随时对写的代码进行解释。“我要先创建一个HashMap,然后。。。”。

因为可能是在纸上写代码,所以不要拘泥于细节。

遇到一个小障碍,可以求助主考官,“这个只要使用String类的一个分割字符串的方法就可以,不过我忘了这个方法的名称。。。”。遇到难题就问。

如果一个题只会用最笨的方法解,那么也要写,并且解释“这种方式虽然可以实现,不过效率非常低,我虽然想通过发现其中的规律来优化,不过最终没有发现,如果我在工作中碰到类似的问题,我会寻求他人帮助”

怎么样及时无法完美的写的情况下也能的高分。比如我在中软笔试的时候考xml操作,那时候我只用delphi操作过xml,所以我没有按照题目要求用java写,而是按delphi写的,最后注明。。。企业面试、笔试没有严格的评分标准,不同于高考等考试。

代码要考虑边界条件,这是主考官非常注意的。(得高分的技巧)输入参数的合法性等等。

如果是在纸上Coding的话,代码书写一定要清晰;无论是机试还是“纸试”,都要适当的写注释;
机试由于是在不熟悉的机器中开发,所以不要慌,必要时寻求帮忙
着眼发展,要有平和的就业心态。
在一个公司要沉淀一段时间,不要频繁跳槽
工作中80%的时间是在干无聊的事情,因为你的工作不是创新大赛,老板是要你为他产生效益。
把看似无聊的80%的工作做的Perfect,把20%的时间用来创造!你就是未来的牛人!
注意学习不能停止!!!

posted @ 2009-11-20 22:24 小强摩羯座 阅读(200) | 评论 (0)编辑 收藏

xml特殊字符
2008-07-03 14:31
转义字符
不合法的XML字符必须被替换为相应的实体。

如果在XML文档中使用类似"<" 的字符, 那么解析器将会出现错误,因为解析器会认为这是一个新元素的开始。所以不应该象下面那样书写代码:

<message>if salary < 1000 then</message>
为了避免出现这种情况,必须将字符"<" 转换成实体,象下面这样:
<message>if salary &lt; 1000 then</message>
下面是五个在XML文档中预定义好的实体:

&lt; < 小于号
&gt; > 大于号
&amp; & 和
&apos; ' 单引号
&quot; " 双引号
实体必须以符号"&"开头,以符号";"结尾。
注意: 只有"<" 字符和"&"字符对于XML来说是严格禁止使用的。剩下的都是合法的,为了减少出错,使用实体是一个好习惯。

CDATA部件
在CDATA内部的所有内容都会被解析器忽略。

如果文本包含了很多的"<"字符和"&"字符——就象程序代码一样,那么最好把他们都放到CDATA部件中。

一个 CDATA 部件以"<![CDATA[" 标记开始,以"]]>"标记结束:

<script>
<![CDATA[
function matchwo(a,b)
{
if (a < b && a < 0) then
{
return 1
}
else
{
return 0
}
}
]]>
</script>
在前面的例子中,所有在CDATA部件之间的文本都会被解析器忽略。

CDATA注意事项:
CDATA部件之间不能再包含CDATA部件(不能嵌套)。如果CDATA部件包含了字符"]]>" 或者"<![CDATA[" ,将很有可能出错哦。

同样要注意在字符串"]]>"之间没有空格或者换行符。

posted @ 2009-11-16 00:32 小强摩羯座 阅读(222) | 评论 (0)编辑 收藏

MySql数据引擎简介与选择方法
2009-04-18 16:17

一、数据引擎简介

MySQL 5.1中,MySQL AB引入了新的插件式存储引擎体系结构,允许将存储引擎加载到正在运新的MySQL服务器中。

使用MySQL插件式存储引擎体系结构,允许数据库专 业人员为特定的应用需求选择专门的存储引擎,完全不需要管理任何特殊的应用编码要求。采用MySQL服务器体系结构,由于在存储级别上提供了一致和简单的 应用模型和API,应用程序编程人员和DBA可不再考虑所有的底层实施细节。因此,尽管不同的存储引擎具有不同的能力,应用程序是与之分离的。

MySQL支持数个存储引擎作为对不同表的类型的处理器。MySQL存储引擎包括处理事务安全表的引擎和处理非事务安全表的引擎:

·         MyISAM管理非事务表。它提供高速存储和检索,以及全文搜索能力。MyISAM在所有MySQL配置里被支持,它是默认的存储引擎,除非你配置MySQL默认使用另外一个引擎。

·         MEMORY存储引擎提供“内存中”表。MERGE存储引擎允许集合将被处理同样的MyISAM表作为一个单独的表。就像MyISAM一样,MEMORY和MERGE存储引擎处理非事务表,这两个引擎也都被默认包含在MySQL中。

注释:MEMORY存储引擎正式地被确定为HEAP引擎。

·         InnoDB和BDB存储引擎提供事务安全表。BDB被包含在为支持它的操作系统发布的MySQL-Max二进制分发版里。InnoDB也默认被包括在所有MySQL 5.1二进制分发版里,你可以按照喜好通过配置MySQL来允许或禁止任一引擎。

·         EXAMPLE存储引擎是一个“存根”引擎,它不做什么。你可以用这个引擎创建表,但没有数据被存储于其中或从其中检索。这个引擎的目的是服务,在MySQL源代码中的一个例子,它演示说明如何开始编写新存储引擎。同样,它的主要兴趣是对开发者。

·         NDB Cluster是被MySQL Cluster用来实现分割到多台计算机上的表的存储引擎。它在MySQL-Max 5.1二进制分发版里提供。这个存储引擎当前只被Linux, Solaris, 和Mac OS X 支持。在未来的MySQL分发版中,我们想要添加其它平台对这个引擎的支持,包括Windows。

·         ARCHIVE存储引擎被用来无索引地,非常小地覆盖存储的大量数据。

·         CSV存储引擎把数据以逗号分隔的格式存储在文本文件中。

·         BLACKHOLE存储引擎接受但不存储数据,并且检索总是返回一个空集。

·         FEDERATED存储引擎把数据存在远程数据库中。在MySQL 5.1中,它只和MySQL一起工作,使用MySQL C Client API。在未来的分发版中,我们想要让它使用其它驱动器或客户端连接方法连接到另外的数据源。

插件式存储引擎体系结构提供了标准的管理和支持服务集合,它们对所有的基本存储引擎来说是共同的。存储引擎本身是数据库服务器的组件,负责对在物理服务器层面上维护的基本数据进行实际操作。

这是一种高效的模块化体系结构,它为那些希望专注于特定应用需求的人员提供了巨大的便利和益处,这类特殊应用需求包括数据仓储、事务处理、高可用性情形等,同时还能利用独立于任何存储引擎的一组接口和服务。

应用程序编程人员和DBA通过位于存储引擎之上的连接器API和服务层来处理MySQL数据库。如果 应用程序的变化需要改变底层存储引擎,或需要增加1个或多个额外的存储引擎以支持新的需求,不需要进行大的编码或进程更改就能实现这类要求。MySQL服 务器体系结构提供了一致和易于使用的API,这类API适用于多种存储引擎,通过该方式,该结构将应用程序与存储引擎的底层复杂性隔离开来。

在下图中,以图形方式介绍了MySQL插件式存储引擎体系结构:
The MySQL pluggable storage enginearchitecture

二、选择存储引擎

与MySQL一起提供的各种存储引擎在设计时考虑了不同的使用情况。为了更有效地使用插件式存储体系结构,最好了解各种存储引擎的优点和缺点。

在下面的表格中,概要介绍了与MySQL一起提供的存储引擎:

Storage engine comparison

下述存储引擎是最常用的:

·         MyISAM:默认的MySQL插件式存储引擎,它是在Web、数据仓储和其他应用环境下最常使用的存储引擎之一。注意,通过更改STORAGE_ENGINE配置变量,能够方便地更改MySQL服务器的默认存储引擎。

·         InnoDB:用于事务处理应用程序,具有众多特性,包括ACID事务支持。

·         BDB:可替代InnoDB的事务引擎,支持COMMIT、ROLLBACK和其他事务特性。

·         Memory:将所有数据保存在RAM中,在需要快速查找引用和其他类似数据的环境下,可提供极快的访问。

·         Merge:允许MySQL DBA或开发人员将一系列等同的MyISAM表以逻辑方式组合在一起,并作为1个对象引用它们。对于诸如数据仓储等VLDB环境十分适合。

·         Archive:为大量很少引用的历史、归档、或安全审计信息的存储和检索提供了完美的解决方案。

·         Federated:能够将多个分离的MySQL服务器链接起来,从多个物理服务器创建一个逻辑数据库。十分适合于分布式环境或数据集市环境。

·         Cluster/NDB:MySQL的簇式数据库引擎,尤其适合于具有高性能查找要求的应用程序,这类查找需求还要求具有最高的正常工作时间和可用性。

·         Other:其他存储引擎包括CSV(引用由逗号隔开的用作数据库表的文件),Blackhole(用于临时禁止对数据库的应用程序输入),以及Example引擎(可为快速创建定制的插件式存储引擎提供帮助)。

请记住,对于整个服务器或方案,你并不一定要使用相同的存储引擎,你可以为方案中的每个表使用不同的存储引擎,这点很重要。

三、将存储引擎指定给表

可以在创建新表时指定存储引擎,或通过使用ALTER TABLE语句指定存储引擎。

要想在创建表时指定存储引擎,可使用ENGINE参数:

CREATE TABLE engineTest(
id INT
) ENGINE = MyISAM;
也可以使用TYPE选项到CREATE TABLE语句来告诉MySQL你要创建什么类型的表。
CREATE TABLE engineTest(
id INT
) TYPE = MyISAM;
虽然TYPE仍然在MySQL 5.1中被支持,现在ENGINE是首选的术语。
如果你省略掉ENGINE或TYPE选项,默认的存储引擎被使用。一般的默认是MyISAM,但 你可以用--default-storage-engine或--default-table-type服务器启动选项来改变它,或者通过设置 storage_engine或table_type系统变量来改变。

要想更改已有表的存储引擎,可使用ALTER TABLE语句:

ALTER TABLEengineTestENGINE =ARCHIVE;
ALTER TABLE t ENGINE = MYISAM;
ALTER TABLE t TYPE = BDB;
如果你试着使用一个未被编译进MySQL的存储引擎,或者试着用一个被编译进MySQL但没有被 激活的存储引擎,MySQL取而代之地创建一个MyISAM类型的表。当你在支持不同存储引擎的MySQL服务器之间拷贝表的时候,上述的行为是很方便 的。(例如,在一个复制建立中,可能你的主服务器为增加安全而支持事务存储引擎,但从服务器为更快的速度而仅使用非事务存储引擎。)
在不可用的类型被指定时,自动用MyISAM表来替代,这会对MySQL的新用户造成混淆。无论何时一个表被自动改变之时,产生一个警告。
MySQL总是创建一个.frm文件来保持表和列的定义。表的索引和数据可能被存储在一个或多个文件里,这取决于表的类型。服务器在存储引擎级别之上创建.frm文件。单独的存储引擎创建任何需要用来管理表的额外文件。
一个数据库可以包含不同类型的表。
四、存储引擎和事务
下述存储引擎支持事务:

·         InnoDB:通过MVCC支持事务,允许COMMIT、ROLLBACK和保存点。

·         NDB:通过MVCC支持事务,允许COMMIT和ROLLBACK。

·         BDB:支持事务,允许COMMIT和ROLLBACK。

事务安全表(TST) 比起非事务安全表 (NTST)有几大优势:

·         更安全。即使MySQL崩溃或遇到硬件问题,要么自动恢复,要么从备份加事务日志恢复,你可以取回数据。

·         你可以合并许多语句,并用COMMIT语句同时接受它们全部(如果autocommit被禁止掉)。

·         你可以执行ROLLBACK来忽略你的改变(如果autocommit被禁止掉)。

·         如果更新失败,你的所有改变都变回原来。(用非事务安全表,所有发生的改变都是永久的)。

·         事务安全存储引擎可以给那些当前用读得到许多更新的表提供更好的部署。

非事务安全表自身有几个优点,因为没有事务开支,所有优点都能出现:

·         更快

·         需要更少的磁盘空间

·         执行更新需要更少的内存

你可以在同一个语句中合并事务安全和非事务安全表来获得两者最好的情况。尽管如此,在autocommit被禁止掉的事务里,变换到非事务安全表依旧即时提交,并且不会被回滚。

虽然MySQL支持数个事务安全存储引擎,为获得最好结果,你不应该在一个事务那混合不同表类型。如果你混合表类型会发生问题,

五、插入搜索引擎

能够使用存储引擎之前,必须使用INSTALL PLUGIN语句将存储引擎plugin(插件)装载到mysql。例如,要想加载example引擎,首先应加载ha_example.so模块:

INSTALL PLUGINha_exampleSONAME 'ha_example.so';

文件.so必须位于MySQL服务器库目录下(典型情况下是installdir/lib)。

六、拔出存储引擎

要想拔出存储引擎,可使用UNINSTALL PLUGIN语句:

UNINSTALL PLUGINha_example;

如果拔出了正被已有表使用的存储引擎,这些表将成为不可访问的。拔出存储引擎之前,请确保没有任何表使用该存储引擎。

为了安装插件式存储引擎,plugin文件必须位于恰当的MySQL库目录下,而且发出INSTALL PLUGIN语句的用户必须具有SUPER权限。

 

创建table时可以通过engine关键字指定使用的存储引擎,如果省略则使用系统默认的存储引擎:

CREATE TABLE t (i INT) ENGINE = MYISAM;

查看系统中支持的存储引擎类型:

mysql> show engines;

标准安装程序中只提供部分引擎的支持,如果需要使用其他的存储引擎,需要使用源代码加不同的参数重新编译。其中DEFAULT表明系统的默认存储引擎,可以通过修改配置参数来变更:

default-storage-engine=MyISAM

查看某个存储引擎的具体信息

mysql> show engine InnoDB status\G;

posted @ 2009-11-16 00:31 小强摩羯座 阅读(358) | 评论 (0)编辑 收藏



如果我们把二叉树看成一个图,父子节点之间的连线看成是双向的,我们姑且定义“距
离”为两个节点之间边的个数。
写一个程序求一棵二叉树中相距最远的两个节点之间的距离。
如图 3-11 所示,粗箭头的边表示最长距离:
图 3-11
树中相距最远的两个节点 A,B

写书评,赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp
分析与解法
我们先画几个不同形状的二叉树,(如图 3-12 所示),看看能否得到一些启示。
图 3-12
几个例子
从例子中可以看出,相距最远的两个节点,一定是两个叶子节点,或者是一个叶子节点
到它的根节点。(为什么?)
【解法一】
根据相距最远的两个节点一定是叶子节点这个规律,我们可以进一步讨论。
对于任意一个节点,以该节点为根,假设这个根有 K 个孩子节点,那么相距最远的两
个节点 U 和 V 之间的路径与这个根节点的关系有两种情况:
1. 若路径经过根Root,则U和V是属于不同子树的,且它们都是该子树中到根节点最远
的节点,否则跟它们的距离最远相矛盾。这种情况如图3-13所示:
图 3-13
相距最远的节点在左右最长的子树中

写书评,赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp
2. 如果路径不经过Root,那么它们一定属于根的K个子树之一。并且它们也是该子树中
相距最远的两个顶点。如图3-14中的节点A:
图 3-14
相距最远的节点在某个子树下
因此,问题就可以转化为在子树上的解,从而能够利用动态规划来解决。
设第 K 棵子树中相距最远的两个节点:Uk 和 Vk,其距离定义为 d(Uk, Vk),那么节点
Uk 或 Vk 即为子树 K 到根节点 Rk 距离最长的节点。不失一般性,我们设 Uk 为子树 K 中到根
节点 Rk 距离最长的节点,其到根节点的距离定义为 d(Uk, R)。取 d(Ui, R)(1≤i≤k)中
最大的两个值 max1 和 max2,那么经过根节点 R 的最长路径为 max1+max2+2,所以树 R 中
相距最远的两个点的距离为:max{d(U1, V1), …, d(Uk, Vk),max1+max2+2}。
采用深度优先搜索如图 3-15,只需要遍历所有的节点一次,时间复杂度为 O(|E|)= O
(|V|-1),其中 V 为点的集合,E 为边的集合。
图 3-15
深度遍历示意图
示例代码如下,我们使用二叉树来实现该算法。
代码清单 3-11
// 数据结构定义

写书评,赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp
struct NODE
{
    NODE* pLeft;
    NODE* pRight;
    int nMaxLeft;
    int nMaxRight;
    char chValue;
};
int nMaxLen = 0;
// 寻找树中最长的两段距离
void FindMaxLen(NODE* pRoot)
{
    // 遍历到叶子节点,返回
    if(pRoot == NULL)
    {
        return;
    }
// 如果左子树为空,那么该节点的左边最长距离为0
if(pRoot -> pLeft == NULL)
{
    pRoot -> nMaxLeft = 0;
}
// 如果右子树为空,那么该节点的右边最长距离为0
if(pRoot -> pRight == NULL)
{
    pRoot -> nMaxRight = 0;
}
// 如果左子树不为空,递归寻找左子树最长距离
if(pRoot -> pLeft != NULL)
{
    FindMaxLen(pRoot -> pLeft);
}
// 如果右子树不为空,递归寻找右子树最长距离
if(pRoot -> pRight != NULL)
{
    FindMaxLen(pRoot -> pRight);
}
// 计算左子树最长节点距离
if(pRoot -> pLeft != NULL)
{
    int nTempMax = 0;
    if(pRoot -> pLeft -> nMaxLeft > pRoot -> pLeft -> nMaxRight)
    {
        nTempMax = pRoot -> pLeft -> nMaxLeft;
    }
    else
    {
        nTempMax = pRoot -> pLeft -> nMaxRight;
    }
    pRoot -> nMaxLeft = nTempMax + 1;
}
// 计算右子树最长节点距离
if(pRoot -> pRight != NULL)
//
//
//
//
//
左孩子
右孩子
左子树中的最长距离
右子树中的最长距离
该节点的值

写书评,赢取《编程之美——微软技术面试心得》www.ieee.org.cn/BCZM.asp
{
int nTempMax = 0;
if(pRoot -> pRight -> nMaxLeft > pRoot -> pRight -> nMaxRight)
{
    nTempMax = pRoot -> pRight -> nMaxLeft;
}
else
{
    nTempMax = pRoot -> pRight -> nMaxRight;
}
pRoot -> nMaxRight = nTempMax + 1;
}
// 更新最长距离
if(pRoot -> nMaxLeft + pRoot -> nMaxRight > nMaxLen)
{
    nMaxLen = pRoot -> nMaxLeft + pRoot -> nMaxRight;
}
}
扩展问题
在代码中,我们使用了递归的办法来完成问题的求解。那么是否有非递归的算法来解决
这个问题呢?
总结
对于递归问题的分析,笔者有一些小小的体会:
1. 先弄清楚递归的顺序。在递归的实现中,往往需要假设后续的调用已经完成,在此
基础之上,才实现递归的逻辑。在该题中,我们就是假设已经把后面的长度计算出
来了,然后继续考虑后面的逻辑;
2. 分析清楚递归体的逻辑,然后写出来。比如在上面的问题中,递归体的逻辑就是如
何计算两边最长的距离;
3. 考虑清楚递归退出的边界条件。也就说,哪些地方应该写return。
注意到以上 3 点,在面对递归问题的时候,我们将总是有章可循。
-----------------------------------------------------------------------------------

《编程之美》读书笔记:第3.8节“求二叉树中节点的最大距离”扩展问题 收藏
 感谢azuryy为大家分享《编程之美》第3.8节扩展问题的答案:用非递归的算法求一颗二叉树中相距最远的两个节点之间的距离。(原博客地址:http://hi.baidu.com/azuryy/blog/item/30ad10ea192424d5d439c96d.html)

#include <stack>
#include <algorithm>
using namespace std;

struct Node
{
    bool _visited;

    Node* left;
    Node* right;
    int maxLeft;
    int maxRight;

    Node()
    {
        _visited = false;
        maxLeft = 0;
        maxRight = 0;
        left = NULL;
        right = NULL;
    }
};

int maxLen   = 0;

stack<Node*> nodeStack;

void findMaxLen( Node* root )
{
    Node* node;

    if ( root == NULL )
    {
        return ;
    }

    nodeStack.push( root );
    while( !nodeStack.empty())
    {
        node = nodeStack.top();

        if ( node->left == NULL && node->right == NULL )
        {
            nodeStack.pop();
            node->_visited = true;
            continue;
        }
        if ( node->left )
        {
            if ( !node->left->_visited )
            {
                nodeStack.push( node->left ) ;
            }           
            else
            {
                node->maxLeft = max( node->left->maxLeft,node->left->maxRight ) + 1;
            }
        }
        if ( ( !node->left || node->left->_visited ) && node->right )
        {
            if ( !node->right->_visited )
            {
                nodeStack.push( node->right ) ;
            }           
            else
            {
                node->maxRight = max( node->right->maxLeft,node->right->maxRight ) + 1;
            }
        }

        if (( !node->left || node->left->_visited ) && ( !node->right || node->right->_visited ))
        {
            maxLen = max( maxLen, node->maxLeft + node->maxRight );
            node->_visited = true;
            nodeStack.pop();           
        }
    }
}


Immediate test case 1:

int main()
{
    Node *tmp ;
    Node* root = new Node();

    tmp = new Node();
    root->left = tmp ;

    tmp = new Node();
    root->right = tmp;

    tmp = new Node();
    root->right->right = tmp;

    tmp = new Node();
    root->right->right->right = tmp;

    tmp = new Node();
    root->right->right->right->left = tmp;
    findMaxLen( root );

    cout << maxLen << endl;
    return 0;
}

 


本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/bvbook/archive/2008/07/25/2710209.aspx

posted @ 2009-11-14 21:58 小强摩羯座 阅读(914) | 评论 (0)编辑 收藏

JDBC优化策略总结
相比Hibernate、iBatis、DBUtils等,理论上JDBC的性能都超过它们。JDBC提供更底层更精细的数据访问策略,这是Hibernate等框架所不具备的。

  在一些高性能的数据操作中,越高级的框架越不适合使用。这里是我在开发中对JDBC使用过程中一些优化经验总结。

  1、选择纯Java的JDBC驱动。

  2、使用连接池--使用一个“池”来管理JDBC连接,并精心调试池配置的参数,目前可用的数据库连接池很多很多。

  如何配置合适的参数呢,需要的是测试,而不是感觉。

  3、重用Connection--最大限度使用每个数据库连接,得到了就不要轻易“丢弃”。

  有时候在一个过程中,会多次操作数据库,而仅仅需要一个连接就够了,没必用一次就获取一个连接,用完后关闭或者入池。这样会增加“池”管理的成本,千万别以为你用了“池”就可以随便申请和归还连接,都是有代价的。如果是一个庞大循环块中操作数据库,更应该注意此问题!

  4、重用Statement--对于一些预定义SQL,设置为静态常量,并尽可能重用预定义SQL产生的PreparedStatement对象。对于多次使用一种模式的SQL,使用预定义SQL可以获取更好的性能。

  5、使用批处理SQL。

  6、优化结果集ResultSet--查询时候,返回的结果集有不同的类型,优先选择只读结果集、不可滚动的属性。

  这里是很容易出现问题的地方:

java.sql.ResultSet

static int CLOSE_CURSORS_AT_COMMIT    
                    该常量指示调用 Connection.commit 方法时应该关闭 ResultSet 对象。    
static int CONCUR_READ_ONLY    
                    该常量指示不可以更新的 ResultSet 对象的并发模式。    
static int CONCUR_UPDATABLE    
                    该常量指示可以更新的 ResultSet 对象的并发模式。    
static int FETCH_FORWARD    
                    该常量指示将按正向(即从第一个到最后一个)处理结果集中的行。    
static int FETCH_REVERSE    
                    该常量指示将按反向(即从最后一个到第一个)处理结果集中的行处理。    
static int FETCH_UNKNOWN    
                    该常量指示结果集中的行的处理顺序未知。    
static int HOLD_CURSORS_OVER_COMMIT    
                    该常量指示调用 Connection.commit 方法时不应关闭 ResultSet 对象。    
static int TYPE_FORWARD_ONLY    
                    该常量指示指针只能向前移动的 ResultSet 对象的类型。    
static int TYPE_SCROLL_INSENSITIVE    
                    该常量指示可滚动但通常不受其他的更改影响的 ResultSet 对象的类型。    
static int TYPE_SCROLL_SENSITIVE    
                    该常量指示可滚动并且通常受其他的更改影响的 ResultSet 对象的类型。
 
  说明下:

  结果集分两种类型:只读和可更改,只读的话,更省内存,查询的结果集不能更改。如果结果集在查询后,更改了值又要保存,则使用可更改结果集。

  结果集的游标也有两种类型:如果没必要让游标自由滚动,则选择单方向移动的游标类型。

  对于是否并发操作:如果不需要考虑线程安全,则选择忽略并发的结果集类型,否则选择并发安全的类型。

  另外,还要控制结果的大小,几乎所有的数据库都有查询记录条数控制的策略,可以海量数据进行分批处理,一次一批,这样不至于把系统搞死。

  7、事物优化--如果数据库不支持事物,就不要写回滚代码,如果不考虑事物,就不要做事务的控制。

  8、安全优化--管理好你的Connection对象,在异常时候能“入池”或者关闭。因此应该将Connection释放的代码写在异常处理的finally块中。

  9、异常处理优化--不要轻易吞噬SQLException,对于DAO、Service层次的数据访问,一般在DAO中跑出异常,在Service中处理异常。但DAO中也可以处理异常,并做转义抛出,不要随便抛出RuntimeExeption,因为这是JVM抛出的,不需要你可以去抛出,因为RuntimeException往往会导致系统挂起。

  10、代码高层优化--在以上的基础上,优化封装你的数据访问方式,尽可能让代码简洁好维护,如果你还觉得性能不行,那就该从整个系统角度考虑优化了,比如加上缓存服务器,集群、负载均衡、优化数据库服务器等等,以获取更好的系能。

  本文出自 “熔 岩” 博客,请务必保留此出处http://lavasoft.blog.51cto.com/62575/225828

posted @ 2009-11-14 19:18 小强摩羯座 阅读(158) | 评论 (0)编辑 收藏

java代码优化编程(2)

  17、不用new关键词创建类的实例

  用new关键词创建类的实例时,构造函数链中的所有构造函数都会被自动调用。但如果一个对象实现了Cloneable接口,我们可以调用它的clone()方法。clone()方法不会调用任何类构造函数。

  在使用设计模式(Design Pattern)的场合,如果用Factory模式创建对象,则改用clone()方法创建新的对象实例非常简单。例如,下面是Factory模式的一个典型实现:

  public static Credit getNewCredit() {

  return new Credit();

  }

  改进后的代码使用clone()方法,如下所示:

  private static Credit BaseCredit = new Credit();

  public static Credit getNewCredit() {

  return (Credit) BaseCredit.clone();

  }

  上面的思路对于数组处理同样很有用。

  18、乘法和除法

  考虑下面的代码:

  for (val = 0; val < 100000; val +=5) {

  alterX = val * 8; myResult = val * 2;

  }

  用移位操作替代乘法操作可以极大地提高性能。下面是修改后的代码:

  for (val = 0; val < 100000; val += 5) {

  alterX = val << 3; myResult = val << 1;

  }

  修改后的代码不再做乘以8的操作,而是改用等价的左移3位操作,每左移1位相当于乘以2。相应地,右移1位操作相当于除以2。值得一提的是,虽然移位操作速度快,但可能使代码比较难于理解,所以最好加上一些注释。

  19、在JSP页面中关闭无用的会话。

  一个常见的误解是以为session在有客户端访问时就被创建,然而事实是直到某server端程序调用 HttpServletRequest.getSession(true)这样的语句时才被创建,注意如果JSP没有显示的使用 <%@page session="false"%> 关闭session,则JSP文件在编译成Servlet时将会自动加上这样一条语句HttpSession session = HttpServletRequest.getSession(true);这也是JSP中隐含的 session对象的来历。由于session会消耗内存资源,因此,如果不打算使用session,应该在所有的JSP中关闭它。

  对于那些无需跟踪会话状态的页面,关闭自动创建的会话可以节省一些资源。使用如下page指令:<%@ page session="false"%>

  20、JDBC与I/O

  如果应用程序需要访问一个规模很大的数据集,则应当考虑使用块提取方式。默认情况下,JDBC每次提取32行数据。举例来说,假设我们要遍历一个5000行的记录集,JDBC必须调用数据库157次才能提取到全部数据。如果把块大小改成512,则调用数据库的次数将减少到10次。

  [p][/p]21、Servlet与内存使用

  许多开发者随意地把大量信息保存到用户会话之中。一些时候,保存在会话中的对象没有及时地被垃圾回收机制回收。从性能上看,典型的症状是用户感到系统周期性地变慢,却又不能把原因归于任何一个具体的组件。如果监视JVM的堆空间,它的表现是内存占用不正常地大起大落。

  解决这类内存问题主要有二种办法。第一种办法是,在所有作用范围为会话的Bean中实现HttpSessionBindingListener接口。这样,只要实现valueUnbound()方法,就可以显式地释放Bean使用的资源。 另外一种办法就是尽快地把会话作废。大多数应用服务器都有设置会话作废间隔时间的选项。另外,也可以用编程的方式调用会话的setMaxInactiveInterval()方法,该方法用来设定在作废会话之前,Servlet容器允许的客户请求的最大间隔时间,以秒计。

  22、使用缓冲标记

  一些应用服务器加入了面向JSP的缓冲标记功能。例如,BEA的WebLogic Server从6.0版本开始支持这个功能,Open Symphony工程也同样支持这个功能。JSP缓冲标记既能够缓冲页面片断,也能够缓冲整个页面。当JSP页面执行时,如果目标片断已经在缓冲之中,则生成该片断的代码就不用再执行。页面级缓冲捕获对指定 URL的请求,并缓冲整个结果页面。对于购物篮、目录以及门户网站的主页来说,这个功能极其有用。对于这类应用,页面级缓冲能够保存页面执行的结果,供后继请求使用。

  23、选择合适的引用机制

  在典型的JSP应用系统中,页头、页脚部分往往被抽取出来,然后根据需要引入页头、页脚。当前,在JSP页面中引入外部资源的方法主要有两种:include指令,以及include动作。

  include 指令:例如<%@ include file="copyright.html" %>。该指令在编译时引入指定的资源。在编译之前,带有 include指令的页面和指定的资源被合并成一个文件。被引用的外部资源在编译时就确定,比运行时才确定资源更高效。

  include动作:例如<jsp:include page="copyright.jsp" />。该动作引入指定页面执行后生成的结果。由于它在运行时完成,因此对输出结果的控制更加灵活。但时,只有当被引用的内容频繁地改变时,或者在对主页面的请求没有出现之前,被引用的页面无法确定时,使用include 动作才合算。

24、及时清除不再需要的会话

  为了清除不再活动的会话,许多应用服务器都有默认的会话超时时间,一般为30分钟。当应用服务器需要保存更多会话时,如果内存容量不足,操作系统会把部分内存数据转移到磁盘,应用服务器也可能根据“最近最频繁使用 ”(Most Recently Used)算法把部分不活跃的会话转储到磁盘,甚至可能抛出“内存不足”异常。在大规模系统中,串行化会话的代价是很昂贵的。当会话不再需要时,应当及时调用HttpSession.invalidate()方法清除会话。 HttpSession.invalidate()方法通常可以在应用的退出页面调用。

  25、不要将数组声明为:public static final 。

  26、HashMap的遍历效率讨论

  经常遇到对HashMap中的key和value值对的遍历操作,有如下两种方法:Map<String, String[]> paraMap = new HashMap<String, String[]>();

  ................//第一个循环

  Set<String> appFieldDefIds = paraMap.keySet();

  for (String appFieldDefId : appFieldDefIds) {

  String[] values = paraMap.get(appFieldDefId);

  ......

  }

  //第二个循环

  for(Entry<String, String[]> entry : paraMap.entrySet()){

  String appFieldDefId = entry.getKey();

  String[] values = entry.getValue();

  .......

  }

  第一种实现明显的效率不如第二种实现。

  分析如下 Set<String> appFieldDefIds = paraMap.keySet(); 是先从HashMap中取得keySet

  代码如下:

  public Set<K> keySet() {

  Set<K> ks = keySet;

  return (ks != null ? ks : (keySet = new KeySet()));

  }

  private class KeySet extends AbstractSet<K> {

  public Iterator<K> iterator() {

  return newKeyIterator();

  }

  public int size() {

  return size;

  }

  public boolean contains(Object o) {

  return containsKey(o);

  }

  public boolean remove(Object o) {

  return HashMap.this.removeEntryForKey(o) != null;

  }

  public void clear() {

  HashMap.this.clear();

  }

  }

  其实就是返回一个私有类KeySet, 它是从AbstractSet继承而来,实现了Set接口。

  再来看看for/in循环的语法

  for(declaration : expression)

  statement

  在执行阶段被翻译成如下各式

  for(Iterator<E> #i = (expression).iterator(); #i.hashNext();){

  declaration = #i.next();

  statement

  }

因此在第一个for语句for (String appFieldDefId : appFieldDefIds) 中调用了HashMap.keySet().iterator() 而这个方法调用了newKeyIterator()

  Iterator<K> newKeyIterator() {

  return new KeyIterator();

  }

  private class KeyIterator extends HashIterator<K> {

  public K next() {

  return nextEntry().getKey();

  }

  }

  所以在for中还是调用了

  在第二个循环for(Entry<String, String[]> entry : paraMap.entrySet())中使用的Iterator是如下的一个内部类

  private class EntryIterator extends HashIterator<Map.Entry<K,V>> {

  public Map.Entry<K,V> next() {

  return nextEntry();

  }

  }

  此时第一个循环得到key,第二个循环得到HashMap的Entry

  效率就是从循环里面体现出来的第二个循环此致可以直接取key和value值

  而第一个循环还是得再利用HashMap的get(Object key)来取value值

  现在看看HashMap的get(Object key)方法

  public V get(Object key) {

  Object k = maskNull(key);

  int hash = hash(k);

  int i = indexFor(hash, table.length); //Entry[] table

  Entry<K,V> e = table;

  while (true) {

  if (e == null)

  return null;

  if (e.hash == hash && eq(k, e.key))

  return e.value;

  e = e.next;

  }

  }

  其实就是再次利用Hash值取出相应的Entry做比较得到结果,所以使用第一中循环相当于两次进入HashMap的Entry中

  而第二个循环取得Entry的值之后直接取key和value,效率比第一个循环高。其实按照Map的概念来看也应该是用第二个循环好一点,它本来就是key和value的值对,将key和value分开操作在这里不是个好选择。

  27、array(数组) 和 ArryList的使用

  array([]):最高效;但是其容量固定且无法动态改变;

  ArrayList:容量可动态增长;但牺牲效率;

  基于效率和类型检验,应尽可能使用array,无法确定数组大小时才使用ArrayList!

  ArrayList是Array的复杂版本

  ArrayList内部封装了一个Object类型的数组,从一般的意义来说,它和数组没有本质的差别,甚至于ArrayList的许多方法,如Index、IndexOf、Contains、Sort等都是在内部数组的基础上直接调用Array的对应方法。

  ArrayList存入对象时,抛弃类型信息,所有对象屏蔽为Object,编译时不检查类型,但是运行时会报错。

  注:jdk5中加入了对泛型的支持,已经可以在使用ArrayList时进行类型检查。

  从这一点上看来,ArrayList与数组的区别主要就是由于动态增容的效率问题了

  28、尽量使用HashMap 和ArrayList ,除非必要,否则不推荐使用HashTable和Vector ,后者由于使用同步机制,而导致了性能的开销。

  29、StringBuffer 和StringBuilder的区别:

  java.lang.StringBuffer 线程安全的可变字符序列。一个类似于 String 的字符串缓冲区,但不能修改。StringBuilder。与该类相比,通常应该优先使用 java.lang.StringBuilder类,因为它支持所有相同的操作,但由于它不执行同步,所以速度更快。为了获得更好的性能,在构造 StirngBuffer 或 StirngBuilder 时应尽可能指定它的容量。当然,如果你操作的字符串长度不超过 16 个字符就不用了。 相同情况下使用 StirngBuilder 相比使用 StringBuffer 仅能获得 10%-15% 左右的性能提升,但却要冒多线程不安全的风险。而在现实的模块化编程中,负责某一模块的程序员不一定能清晰地判断该模块是否会放入多线程的环境中运行,因此:除非你能确定你的系统的瓶颈是在 StringBuffer 上,并且确定你的模块不会运行在多线程模式下,否则还是用 StringBuffer 吧。

posted @ 2009-11-14 19:15 小强摩羯座 阅读(326) | 评论 (0)编辑 收藏

 

  可供程序利用的资源(内存、CPU时间、网络带宽等)是有限的,优化的目的就是让程序用尽可能少的资源完成预定的任务。优化通常包含两方面的内容:减小代码的体积,提高代码的运行效率。本文讨论的主要是如何提高代码的效率。

  在 Java程序中,性能问题的大部分原因并不在于Java语言,而是在于程序本身。养成好的代码编写习惯非常重要,比如正确地、巧妙地运用 java.lang.String类和java.util.Vector类,它能够显着地提高程序的性能。下面我们就来具体地分析一下这方面的问题。

  1、    尽量指定类的final修饰符 带有final修饰符的类是不可派生的。在Java核心API中,有许多应用final的例子,例如 java.lang.String。为String类指定final防止了人们覆盖length()方法。另外,如果指定一个类为final,则该类所有的方法都是final。Java编译器会寻找机会内联(inline)所有的final方法(这和具体的编译器实现有关)。此举能够使性能平均提高 50% 。

  2、    尽量重用对象。特别是String 对象的使用中,出现字符串连接情况时应用StringBuffer 代替。由于系统不仅要花时间生成对象,以后可能还需花时间对这些对象进行垃圾回收和处理。因此,生成过多的对象将会给程序的性能带来很大的影响。

  3、    尽量使用局部变量,调用方法时传递的参数以及在调用中创建的临时变量都保存在栈(Stack)中,速度较快。其他变量,如静态变量、实例变量等,都在堆(Heap)中创建,速度较慢。另外,依赖于具体的编译器/JVM,局部变量还可能得到进一步优化。请参见《尽可能使用堆栈变量》。

  4、    不要重复初始化变量  默认情况下,调用类的构造函数时, Java会把变量初始化成确定的值:所有的对象被设置成null,整数变量(byte、 short、int、long)设置成0,float和double变量设置成0.0,逻辑值设置成false。当一个类从另一个类派生时,这一点尤其应该注意,因为用new关键词创建一个对象时,构造函数链中的所有构造函数都会被自动调用。

  5、    在JAVA + ORACLE 的应用系统开发中,java中内嵌的SQL语句尽量使用大写的形式,以减轻ORACLE解析器的解析负担。

  6、    Java 编程过程中,进行数据库连接、I/O流操作时务必小心,在使用完毕后,即使关闭以释放资源。因为对这些大对象的操作会造成系统大的开销,稍有不慎,会导致严重的后果。

  7、    由于JVM的有其自身的GC机制,不需要程序开发者的过多考虑,从一定程度上减轻了开发者负担,但同时也遗漏了隐患,过分的创建对象会消耗系统的大量内存,严重时会导致内存泄露,因此,保证过期对象的及时回收具有重要意义。JVM回收垃圾的条件是:对象不在被引用;然而,JVM的GC并非十分的机智,即使对象满足了垃圾回收的条件也不一定会被立即回收。所以,建议我们在对象使用完毕,应手动置成null。

  8、    在使用同步机制时,应尽量使用方法同步代替代码块同步。

  9、    尽量减少对变量的重复计算

  例如:for(int i = 0;i < list.size; i ++) {

  …

  }

  应替换为:

  for(int i = 0,int len = list.size();i < len; i ++) {

  …

  }

  10、尽量采用lazy loading 的策略,即在需要的时候才开始创建。

  例如:    String str = “aaa”;

  if(i == 1) {

  list.add(str);

  }

  应替换为:

  if(i == 1) {

  String str = “aaa”;

  list.add(str);

  }

  11、慎用异常

  异常对性能不利。抛出异常首先要创建一个新的对象。Throwable接口的构造函数调用名为fillInStackTrace()的本地(Native)方法,fillInStackTrace()方法检查堆栈,收集调用跟踪信息。只要有异常被抛出,VM就必须调整调用堆栈,因为在处理过程中创建了一个新的对象。 异常只能用于错误处理,不应该用来控制程序流程。

12、不要在循环中使用:

  Try {

  } catch() {

  }

  应把其放置在最外层。

  13、StringBuffer 的使用:

  StringBuffer表示了可变的、可写的字符串。

  有三个构造方法 :

  StringBuffer ();            //默认分配16个字符的空间

  StringBuffer (int size);  //分配size个字符的空间

  StringBuffer (String str);  //分配16个字符+str.length()个字符空间

  你可以通过StringBuffer的构造函数来设定它的初始化容量,这样可以明显地提升性能。这里提到的构造函数是 StringBuffer(int length),length参数表示当前的StringBuffer能保持的字符数量。你也可以使用 ensureCapacity(int minimumcapacity)方法在StringBuffer对象创建之后设置它的容量。首先我们看看 StringBuffer的缺省行为,然后再找出一条更好的提升性能的途径。

  StringBuffer在内部维护一个字符数组,当你使用缺省的构造函数来创建StringBuffer对象的时候,因为没有设置初始化字符长度,StringBuffer的容量被初始化为16个字符,也就是说缺省容量就是16个字符。当StringBuffer达到最大容量的时候,它会将自身容量增加到当前的2倍再加2,也就是(2*旧值+2)。如果你使用缺省值,初始化之后接着往里面追加字符,在你追加到第16个字符的时候它会将容量增加到34(2*16+2),当追加到34个字符的时候就会将容量增加到 70(2*34+2)。无论何事只要StringBuffer到达它的最大容量它就不得不创建一个新的字符数组然后重新将旧字符和新字符都拷贝一遍――这也太昂贵了点。所以总是给StringBuffer设置一个合理的初始化容量值是错不了的,这样会带来立竿见影的性能增益。

  StringBuffer初始化过程的调整的作用由此可见一斑。所以,使用一个合适的容量值来初始化StringBuffer永远都是一个最佳的建议。

  14、合理的使用Java类 java.util.Vector。

  简单地说,一个Vector就是一个java.lang.Object实例的数组。Vector与数组相似,它的元素可以通过整数形式的索引访问。但是,Vector类型的对象在创建之后,对象的大小能够根据元素的增加或者删除而扩展、缩小。请考虑下面这个向Vector加入元素的例子:

  Object obj = new Object();

  Vector v = new Vector(100000);

  for(int I=0;

  I<100000; I++) { v.add(0,obj); }

  除非有绝对充足的理由要求每次都把新元素插入到Vector的前面,否则上面的代码对性能不利。在默认构造函数中,Vector的初始存储能力是10个元素,如果新元素加入时存储能力不足,则以后存储能力每次加倍。Vector类就象StringBuffer类一样,每次扩展存储能力时,所有现有的元素都要复制到新的存储空间之中。下面的代码片段要比前面的例子快几个数量级:

  Object obj = new Object();

  Vector v = new Vector(100000);

  for(int I=0; I<100000; I++) { v.add(obj); }

  同样的规则也适用于Vector类的remove()方法。由于Vector中各个元素之间不能含有“空隙”,删除除最后一个元素之外的任意其他元素都导致被删除元素之后的元素向前移动。也就是说,从Vector删除最后一个元素要比删除第一个元素“开销”低好几倍。

  假设要从前面的Vector删除所有元素,我们可以使用这种代码:

  for(int I=0; I<100000; I++)

  {

  v.remove(0);

  }

  但是,与下面的代码相比,前面的代码要慢几个数量级:

  for(int I=0; I<100000; I++)

  {

  v.remove(v.size()-1);

  }

  从Vector类型的对象v删除所有元素的最好方法是:

  v.removeAllElements();


假设Vector类型的对象v包含字符串“Hello”。考虑下面的代码,它要从这个Vector中删除“Hello”字符串:

  String s = "Hello";

  int i = v.indexOf(s);

  if(I != -1) v.remove(s);

  这些代码看起来没什么错误,但它同样对性能不利。在这段代码中,indexOf()方法对v进行顺序搜索寻找字符串“Hello”,remove(s)方法也要进行同样的顺序搜索。改进之后的版本是:

  String s = "Hello";

  int i = v.indexOf(s);

  if(I != -1) v.remove(i);

  这个版本中我们直接在remove()方法中给出待删除元素的精确索引位置,从而避免了第二次搜索。一个更好的版本是:

  String s = "Hello"; v.remove(s);

  最后,我们再来看一个有关Vector类的代码片段:

  for(int I=0; I++;I < v.length)

  如果v包含100,000个元素,这个代码片段将调用v.size()方法100,000次。虽然size方法是一个简单的方法,但它仍旧需要一次方法调用的开销,至少JVM需要为它配置以及清除堆栈环境。在这里,for循环内部的代码不会以任何方式修改Vector类型对象v的大小,因此上面的代码最好改写成下面这种形式:

  int size = v.size(); for(int I=0; I++;I<size)

  虽然这是一个简单的改动,但它仍旧赢得了性能。毕竟,每一个CPU周期都是宝贵的。

  15、当复制大量数据时,使用System.arraycopy()命令。

  16、代码重构:增强代码的可读性。

  例如:

  public class ShopCart {

  private List carts ;

  …

  public void add (Object item) {

  if(carts == null) {

  carts = new ArrayList();

  }

  crts.add(item);

  }

  public void remove(Object item) {

  if(carts. contains(item)) {

  carts.remove(item);

  }

  }

  public List getCarts() {

  //返回只读列表

  return Collections.unmodifiableList(carts);

  }

  //不推荐这种方式

  //this.getCarts().add(item);

  }

posted @ 2009-11-14 19:12 小强摩羯座 阅读(211) | 评论 (0)编辑 收藏

精华游戏算法整理
Author Author: 一滴蔚蓝色 | Date Date: 2007-05-17 | View Count View: 8311 | Section & Category 开发技术 - 程序设计 | Digg Digg: 12

游戏算法整理 算法一:A*寻路初探

作者: Patrick Lester
译者:Panic 2005年3月18日

译者序:很久以前就知道了A*算法,但是从未认真读过相关的文章,也没有看过代码,只是脑子里有个模糊的概念。这次决定从头开始,研究一下这个被人推崇备至的简单方法,作为学习人工智能的开始。
这篇文章非常知名,国内应该有不少人翻译过它,我没有查找,觉得翻译本身也是对自身英文水平的锻炼。经过努力,终于完成了文档,也明白的A*算法的原理。毫无疑问,作者用形象的描述,简洁诙谐的语言由浅入深的讲述了这一神奇的算法,相信每个读过的人都会对此有所认识(如果没有,那就是偶的翻译太差了 --b)。
现在是2005年7月19日的版本,应原作者要求,对文中的某些算法细节做了修改。
原文链接:http://www.gamedev.net/reference/articles/article2003.asp
原作者文章链接:http://www.policyalmanac.org/games/aStarTutorial.htm
以下是翻译的正文。

会者不难,A*(念作A星)算法对初学者来说的确有些难度。

这篇文章并不试图对这个话题作权威的陈述。取而代之的是,它只是描述算法的原理,使你可以在进一步的阅读中理解其他相关的资料。

最后,这篇文章没有程序细节。你尽可以用任意的计算机程序语言实现它。如你所愿,我在文章的末尾包含了一个指向例子程序的链接。 压缩包包括C++和Blitz Basic两个语言的版本,如果你只是想看看它的运行效果,里面还包含了可执行文件。

我们正在提高自己。让我们从头开始。。。

序:搜索区域

假设有人想从A点移动到一墙之隔的B点,如下图,绿色的是起点A,红色是终点B,蓝色方块是中间的墙。


[图1]

你首先注意到,搜索区域被我们划分成了方形网格。像这样,简化搜索区域,是寻路的第一步。这一方法把搜索区域简化成了一个二维数组。数组的每一个元素是网格的一个方块,方块被标记为可通过的和不可通过的。路径被描述为从A到B我们经过的方块的集合。一旦路径被找到,我们的人就从一个方格的中心走向另一个,直到到达目的地。

这些中点被称为“节点”。当你阅读其他的寻路资料时,你将经常会看到人们讨论节点。为什么不把他们描述为方格呢?因为有可能你的路径被分割成其他不是方格的结构。他们完全可以是矩形,六角形,或者其他任意形状。节点能够被放置在形状的任意位置-可以在中心,或者沿着边界,或其他什么地方。我们使用这种系统,无论如何,因为它是最简单的。

开始搜索

正如我们处理上图网格的方法,一旦搜索区域被转化为容易处理的节点,下一步就是去引导一次找到最短路径的搜索。在A*寻路算法中,我们通过从点A开始,检查相邻方格的方式,向外扩展直到找到目标。

我们做如下操作开始搜索:


   1,从点A开始,并且把它作为待处理点存入一个“开启列表”。开启列表就像一张购物清单。尽管现在列表里只有一个元素,但以后就会多起来。你的路径可能会通过它包含的方格,也可能不会。基本上,这是一个待检查方格的列表。
   2,寻找起点周围所有可到达或者可通过的方格,跳过有墙,水,或其他无法通过地形的方格。也把他们加入开启列表。为所有这些方格保存点A作为“父方格”。当我们想描述路径的时候,父方格的资料是十分重要的。后面会解释它的具体用途。
   3,从开启列表中删除点A,把它加入到一个“关闭列表”,列表中保存所有不需要再次检查的方格。

在这一点,你应该形成如图的结构。在图中,暗绿色方格是你起始方格的中心。它被用浅蓝色描边,以表示它被加入到关闭列表中了。所有的相邻格现在都在开启列表中,它们被用浅绿色描边。每个方格都有一个灰色指针反指他们的父方格,也就是开始的方格。


[图2]

接着,我们选择开启列表中的临近方格,大致重复前面的过程,如下。但是,哪个方格是我们要选择的呢?是那个F值最低的。

路径评分

选择路径中经过哪个方格的关键是下面这个等式:

F = G + H

这里:
    * G = 从起点A,沿着产生的路径,移动到网格上指定方格的移动耗费。
    * H = 从网格上那个方格移动到终点B的预估移动耗费。这经常被称为启发式的,可能会让你有点迷惑。这样叫的原因是因为它只是个猜测。我们没办法事先知道路径的长度,因为路上可能存在各种障碍(墙,水,等等)。虽然本文只提供了一种计算H的方法,但是你可以在网上找到很多其他的方法。

我们的路径是通过反复遍历开启列表并且选择具有最低F值的方格来生成的。文章将对这个过程做更详细的描述。首先,我们更深入的看看如何计算这个方程。

正如上面所说,G表示沿路径从起点到当前点的移动耗费。在这个例子里,我们令水平或者垂直移动的耗费为10,对角线方向耗费为14。我们取这些值是因为沿对角线的距离是沿水平或垂直移动耗费的的根号2(别怕),或者约1.414倍。为了简化,我们用10和14近似。比例基本正确,同时我们避免了求根运算和小数。这不是只因为我们怕麻烦或者不喜欢数学。使用这样的整数对计算机来说也更快捷。你不就就会发现,如果你不使用这些简化方法,寻路会变得很慢。

既然我们在计算沿特定路径通往某个方格的G值,求值的方法就是取它父节点的G值,然后依照它相对父节点是对角线方向或者直角方向(非对角线),分别增加14和10。例子中这个方法的需求会变得更多,因为我们从起点方格以外获取了不止一个方格。

H值可以用不同的方法估算。我们这里使用的方法被称为曼哈顿方法,它计算从当前格到目的格之间水平和垂直的方格的数量总和,忽略对角线方向。然后把结果乘以10。这被成为曼哈顿方法是因为它看起来像计算城市中从一个地方到另外一个地方的街区数,在那里你不能沿对角线方向穿过街区。很重要的一点,我们忽略了一切障碍物。这是对剩余距离的一个估算,而非实际值,这也是这一方法被称为启发式的原因。想知道更多?你可以在这里找到方程和额外的注解。

F的值是G和H的和。第一步搜索的结果可以在下面的图表中看到。F,G和H的评分被写在每个方格里。正如在紧挨起始格右侧的方格所表示的,F被打印在左上角,G在左下角,H则在右下角。


[图3]

现在我们来看看这些方格。写字母的方格里,G = 10。这是因为它只在水平方向偏离起始格一个格距。紧邻起始格的上方,下方和左边的方格的G值都等于10。对角线方向的G值是14。

H值通过求解到红色目标格的曼哈顿距离得到,其中只在水平和垂直方向移动,并且忽略中间的墙。用这种方法,起点右侧紧邻的方格离红色方格有3格距离,H值就是30。这块方格上方的方格有4格距离(记住,只能在水平和垂直方向移动),H值是40。你大致应该知道如何计算其他方格的H值了~。

每个格子的F值,还是简单的由G和H相加得到

继续搜索

为了继续搜索,我们简单的从开启列表中选择F值最低的方格。然后,对选中的方格做如下处理:

   4,把它从开启列表中删除,然后添加到关闭列表中。
   5,检查所有相邻格子。跳过那些已经在关闭列表中的或者不可通过的(有墙,水的地形,或者其他无法通过的地形),把他们添加进开启列表,如果他们还不在里面的话。把选中的方格作为新的方格的父节点。
   6,如果某个相邻格已经在开启列表里了,检查现在的这条路径是否更好。换句话说,检查如果我们用新的路径到达它的话,G值是否会更低一些。如果不是,那就什么都不做。
      另一方面,如果新的G值更低,那就把相邻方格的父节点改为目前选中的方格(在上面的图表中,把箭头的方向改为指向这个方格)。最后,重新计算F和G的值。如果这看起来不够清晰,你可以看下面的图示。

好了,让我们看看它是怎么运作的。我们最初的9格方格中,在起点被切换到关闭列表中后,还剩8格留在开启列表中。这里面,F值最低的那个是起始格右侧紧邻的格子,它的F值是40。因此我们选择这一格作为下一个要处理的方格。在紧随的图中,它被用蓝色突出显示。


[图4]

首先,我们把它从开启列表中取出,放入关闭列表(这就是他被蓝色突出显示的原因)。然后我们检查相邻的格子。哦,右侧的格子是墙,所以我们略过。左侧的格子是起始格。它在关闭列表里,所以我们也跳过它。

其他4格已经在开启列表里了,于是我们检查G值来判定,如果通过这一格到达那里,路径是否更好。我们来看选中格子下面的方格。它的G值是14。如果我们从当前格移动到那里,G值就会等于20(到达当前格的G值是10,移动到上面的格子将使得G值增加10)。因为G值20大于14,所以这不是更好的路径。如果你看图,就能理解。与其通过先水平移动一格,再垂直移动一格,还不如直接沿对角线方向移动一格来得简单。

当我们对已经存在于开启列表中的4个临近格重复这一过程的时候,我们发现没有一条路径可以通过使用当前格子得到改善,所以我们不做任何改变。既然我们已经检查过了所有邻近格,那么就可以移动到下一格了。

于是我们检索开启列表,现在里面只有7格了,我们仍然选择其中F值最低的。有趣的是,这次,有两个格子的数值都是54。我们如何选择?这并不麻烦。从速度上考虑,选择最后添加进列表的格子会更快捷。这种导致了寻路过程中,在靠近目标的时候,优先使用新找到的格子的偏好。但这无关紧要。(对相同数值的不同对待,导致不同版本的A*算法找到等长的不同路径。)

那我们就选择起始格右下方的格子,如图。


[图5]

这次,当我们检查相邻格的时候,发现右侧是墙,于是略过。上面一格也被略过。我们也略过了墙下面的格子。为什么呢?因为你不能在不穿越墙角的情况下直接到达那个格子。你的确需要先往下走然后到达那一格,按部就班的走过那个拐角。(注解:穿越拐角的规则是可选的。它取决于你的节点是如何放置的。)

这样一来,就剩下了其他5格。当前格下面的另外两个格子目前不在开启列表中,于是我们添加他们,并且把当前格指定为他们的父节点。其余3格,两个已经在关闭列表中(起始格,和当前格上方的格子,在表格中蓝色高亮显示),于是我们略过它们。最后一格,在当前格的左侧,将被检查通过这条路径,G值是否更低。不必担心,我们已经准备好检查开启列表中的下一格了。

我们重复这个过程,直到目标格被添加进关闭列表(注解),就如在下面的图中所看到的。


[图6]

注意,起始格下方格子的父节点已经和前面不同的。之前它的G值是28,并且指向右上方的格子。现在它的G值是20,指向它上方的格子。这在寻路过程中的某处发生,当应用新路径时,G值经过检查变得低了-于是父节点被重新指定,G和F值被重新计算。尽管这一变化在这个例子中并不重要,在很多场合,这种变化会导致寻路结果的巨大变化。

那么,我们怎么确定这条路径呢?很简单,从红色的目标格开始,按箭头的方向朝父节点移动。这最终会引导你回到起始格,这就是你的路径!看起来应该像图中那样。从起始格A移动到目标格B只是简单的从每个格子(节点)的中点沿路径移动到下一个,直到你到达目标点。就这么简单。


[图7]

A*方法总结

好,现在你已经看完了整个说明,让我们把每一步的操作写在一起:

   1,把起始格添加到开启列表。
   2,重复如下的工作:
      a) 寻找开启列表中F值最低的格子。我们称它为当前格。
      b) 把它切换到关闭列表。
      c) 对相邻的8格中的每一个?
          * 如果它不可通过或者已经在关闭列表中,略过它。反之如下。
          * 如果它不在开启列表中,把它添加进去。把当前格作为这一格的父节点。记录这一格的F,G,和H值。
          * 如果它已经在开启列表中,用G值为参考检查新的路径是否更好。更低的G值意味着更好的路径。如果是这样,就把这一格的父节点改成当前格,并且重新计算这一格的G和F值。如果你保持你的开启列表按F值排序,改变之后你可能需要重新对开启列表排序。

      d) 停止,当你
          * 把目标格添加进了关闭列表(注解),这时候路径被找到,或者
          * 没有找到目标格,开启列表已经空了。这时候,路径不存在。
   3.保存路径。从目标格开始,沿着每一格的父节点移动直到回到起始格。这就是你的路径。

(注解:在这篇文章的较早版本中,建议的做法是当目标格(或节点)被加入到开启列表,而不是关闭列表的时候停止寻路。这么做会更迅速,而且几乎总是能找到最短的路径,但不是绝对的。当从倒数第二个节点到最后一个(目标节点)之间的移动耗费悬殊很大时-例如刚好有一条河穿越两个节点中间,这时候旧的做法和新的做法就会有显著不同。)

题外话

离题一下,见谅,值得一提的是,当你在网上或者相关论坛看到关于A*的不同的探讨,你有时会看到一些被当作A*算法的代码而实际上他们不是。要使用 A*,你必须包含上面讨论的所有元素--特定的开启和关闭列表,用F,G和H作路径评价。有很多其他的寻路算法,但他们并不是A*,A*被认为是他们当中最好的。Bryan Stout在这篇文章后面的参考文档中论述了一部分,包括他们的一些优点和缺点。有时候特定的场合其他算法会更好,但你必须很明确你在作什么。好了,够多的了。回到文章。

实现的注解

现在你已经明白了基本原理,写你的程序的时候还得考虑一些额外的东西。下面这些材料中的一些引用了我用C++和Blitz Basic写的程序,但对其他语言写的代码同样有效。

1.其他单位(避免碰撞):如果你恰好看了我的例子代码,你会发现它完全忽略了其他单位。我的寻路者事实上可以相互穿越。取决于具体的游戏,这也许可以,也许不行。如果你打算考虑其他单位,希望他们能互相绕过,我建议你只考虑静止或那些在计算路径时临近当前单位的单位,把它们当前的位置标志为可通过的。对于临近的运动着的单位,你可以通过惩罚它们各自路径上的节点,来鼓励这些寻路者找到不同的路径(更多的描述见#2).

如果你选择了把其他正在移动并且远离当前寻路单位的那些单位考虑在内,你将需要实现一种方法及时预测在何时何地碰撞可能会发生,以便恰当的避免。否则你极有可能得到一条怪异的路径,单位突然转弯试图避免和一个已经不存在的单位发生碰撞。

当然,你也需要写一些碰撞检测的代码,因为无论计算的时候路径有多完美,它也会因时间而改变。当碰撞发生时,一个单位必须寻找一条新路径,或者,如果另一个单位正在移动并且不是正面碰撞,在继续沿当前路径移动之前,等待那个单位离开。

这些提示大概可以让你开始了。如果你想了解更多,这里有些你可能会觉得有用的链接:

    * 自治角色的指导行为:Craig Reynold在指导能力上的工作和寻路有些不同,但是它可以和寻路整合从而形成更完整的移动和碰撞检测系统。
    * 电脑游戏中的长短距指导:指导和寻路方面著作的一个有趣的考察。这是一个pdf文件。
    * 协同单位移动:一个两部分系列文章的第一篇,内容是关于编队和基于分组的移动,作者是帝国时代(Age of Empires)的设计者Dave Pottinger.
    * 实现协同移动:Dave Pottinger文章系列的第二篇。

2. 不同的地形损耗:在这个教程和我附带的程序中,地形只能是二者之-可通过的和不可通过的。但是你可能会需要一些可通过的地形,但是移动耗费更高-沼泽,小山,地牢的楼梯,等等。这些都是可通过但是比平坦的开阔地移动耗费更高的地形。类似的,道路应该比自然地形移动耗费更低。

这个问题很容易解决,只要在计算任何地形的G值的时候增加地形损耗就可以了。简单的给它增加一些额外的损耗就可以了。由于A*算法已经按照寻找最低耗费的路径来设计,所以很容易处理这种情况。在我提供的这个简单的例子里,地形只有可通过和不可通过两种,A*会找到最短,最直接的路径。但是在地形耗费不同的场合,耗费最低的路径也许会包含很长的移动距离-就像沿着路绕过沼泽而不是直接穿过它。

一种需额外考虑的情况是被专家称之为“influence mapping”的东西(暂译为影响映射图)。就像上面描述的不同地形耗费一样,你可以创建一格额外的分数系统,并把它应用到寻路的AI中。假设你有一张有大批寻路者的地图,他们都要通过某个山区。每次电脑生成一条通过那个关口的路径,它就会变得更拥挤。如果你愿意,你可以创建一个影响映射图对有大量屠杀事件的格子施以不利影响。这会让计算机更倾向安全些的路径,并且帮助它避免总是仅仅因为路径短(但可能更危险)而持续把队伍和寻路者送到某一特定路径。

另一个可能得应用是惩罚周围移动单位路径上得节点。A*的一个底限是,当一群单位同时试图寻路到接近的地点,这通常会导致路径交叠。以为一个或者多个单位都试图走相同或者近似的路径到达目的地。对其他单位已经“认领”了的节点增加一些惩罚会有助于你在一定程度上分离路径,降低碰撞的可能性。然而,如果有必要,不要把那些节点看成不可通过的,因为你仍然希望多个单位能够一字纵队通过拥挤的出口。同时,你只能惩罚那些临近单位的路径,而不是所有路径,否则你就会得到奇怪的躲避行为例如单位躲避路径上其他已经不在那里的单位。 还有,你应该只惩罚路径当前节点和随后的节点,而不应处理已经走过并甩在身后的节点。

3. 处理未知区域:你是否玩过这样的PC游戏,电脑总是知道哪条路是正确的,即使它还没有侦察过地图?对于游戏,寻路太好会显得不真实。幸运的是,这是一格可以轻易解决的问题。

答案就是为每个不同的玩家和电脑(每个玩家,而不是每个单位--那样的话会耗费大量的内存)创建一个独立的“knownWalkability”数组,每个数组包含玩家已经探索过的区域,以及被当作可通过区域的其他区域,直到被证实。用这种方法,单位会在路的死端徘徊并且导致错误的选择直到他们在周围找到路。一旦地图被探索了,寻路就像往常那样进行。

4. 平滑路径:尽管A*提供了最短,最低代价的路径,它无法自动提供看起来平滑的路径。看一下我们的例子最终形成的路径(在图7)。最初的一步是起始格的右下方,如果这一步是直接往下的话,路径不是会更平滑一些吗?

有几种方法来解决这个问题。当计算路径的时候可以对改变方向的格子施加不利影响,对G值增加额外的数值。也可以换种方法,你可以在路径计算完之后沿着它跑一遍,找那些用相邻格替换会让路径看起来更平滑的地方。想知道完整的结果,查看Toward More Realistic Pathfinding,一篇(免费,但是需要注册)Marco Pinter发表在Gamasutra.com的文章

5. 非方形搜索区域:在我们的例子里,我们使用简单的2D方形图。你可以不使用这种方式。你可以使用不规则形状的区域。想想冒险棋的游戏,和游戏中那些国家。你可以设计一个像那样的寻路关卡。为此,你可能需要建立一个国家相邻关系的表格,和从一个国家移动到另一个的G值。你也需要估算H值的方法。其他的事情就和例子中完全一样了。当你需要向开启列表中添加新元素的时候,不需使用相邻的格子,取而代之的是从表格中寻找相邻的国家。

类似的,你可以为一张确定的地形图创建路径点系统,路径点一般是路上,或者地牢通道的转折点。作为游戏设计者,你可以预设这些路径点。两个路径点被认为是相邻的如果他们之间的直线上没有障碍的话。在冒险棋的例子里,你可以保存这些相邻信息在某个表格里,当需要在开启列表中添加元素的时候使用它。然后你就可以记录关联的G值(可能使用两点间的直线距离),H值(可以使用到目标点的直线距离),其他都按原先的做就可以了。

Amit Patel 写了其他方法的摘要。另一个在非方形区域搜索RPG地图的例子,查看我的文章Two-Tiered A* Pathfinding。(译者注:译文:  A*分层寻路)

6. 一些速度方面的提示:当你开发你自己的A*程序,或者改写我的,你会发现寻路占据了大量的CPU时间,尤其是在大地图上有大量对象在寻路的时候。如果你阅读过网上的其他材料,你会明白,即使是开发了星际争霸或帝国时代的专家,这也无可奈何。如果你觉得寻路太过缓慢,这里有一些建议也许有效:

    * 使用更小的地图或者更少的寻路者。

    * 不要同时给多个对象寻路。取而代之的是把他们加入一个队列,把寻路过程分散在几个游戏周期中。如果你的游戏以40周期每秒的速度运行,没人能察觉。但是当大量寻路者计算自己路径的时候,他们会发觉游戏速度突然变慢。

    * 尽量使用更大的地图网格。这降低了寻路中搜索的总网格数。如果你有志气,你可以设计两个或者更多寻路系统以便使用在不同场合,取决于路径的长度。这也正是专业人士的做法,用大的区域计算长的路径,然后在接近目标的时候切换到使用小格子/区域的精细寻路。如果你对这个观点感兴趣,查阅我的文章Two-Tiered A* Pathfinding。(译者注:译文 :A*分层寻路)

    * 使用路径点系统计算长路径,或者预先计算好路径并加入到游戏中。
   
    * 预处理你的地图,表明地图中哪些区域是不可到达的。我把这些区域称作“孤岛”。事实上,他们可以是岛屿或其他被墙壁包围等无法到达的任意区域。A*的下限是,当你告诉它要寻找通往那些区域的路径时,它会搜索整个地图,直到所有可到达的方格/节点都被通过开启列表和关闭列表的计算。这会浪费大量的CPU时间。可以通过预先确定这些区域(比如通过flood-fill或类似的方法)来避免这种情况的发生,用某些种类的数组记录这些信息,在开始寻路前检查它。
   
    * 在一个拥挤的类似迷宫的场合,把不能连通的节点看作死端。这些区域可以在地图编辑器中预先手动指定,或者如果你有雄心壮志,开发一个自动识别这些区域的算法。给定死端的所有节点可以被赋予一个唯一的标志数字。然后你就可以在寻路过程中安全的忽略所有死端,只有当起点或者终点恰好在死端的某个节点的时候才需要考虑它们。

7. 维护开启列表:这是A*寻路算法最重要的组成部分。每次你访问开启列表,你都需要寻找F值最低的方格。有几种不同的方法实现这一点。你可以把路径元素随意保存,当需要寻找F值最低的元素的时候,遍历开启列表。这很简单,但是太慢了,尤其是对长路径来说。这可以通过维护一格排好序的列表来改善,每次寻找F值最低的方格只需要选取列表的首元素。当我自己实现的时候,这种方法是我的首选。

在小地图。这种方法工作的很好,但它并不是最快的解决方案。更苛求速度的A*程序员使用叫做二叉堆的方法,这也是我在代码中使用的方法。凭我的经验,这种方法在大多数场合会快2~3倍,并且在长路经上速度呈几何级数提升(10倍以上速度)。如果你想了解更多关于二叉堆的内容,查阅我的文章,Using Binary Heaps in A* Pathfinding。(译者注:译文:在A*寻路中使用二叉堆)

另一个可能的瓶颈是你在多次寻路之间清除和保存你的数据结构的方法。我个人更倾向把所有东西都存储在数组里面。虽然节点可以以面向对象的风格被动态的产生,记录和保存,我发现创建和删除对象所增加的大量时间,以及多余的管理层次减慢的整个过程的速度。但是,如果你使用数组,你需要在调用之间清理数据。这中情形你想做的最后一件事就是在寻路调用之后花点时间把一切归零,尤其是你的地图很大的时候。

我通过使用一个叫做whichList(x,y)的二维数组避免这种开销,数组的每个元素表明了节点在开启列表还是在关闭列表中。尝试寻路之后,我没有清零这个数组。取而代之的是,我在新的寻路中重置onClosedList和onOpenList的数值,每次寻路两个都+5或者类似其他数值。这种方法,算法可以安全的跳过前面寻路留下的脏数据。我还在数组中储存了诸如F,G和H的值。这样一来,我只需简单的重写任何已经存在的值而无需被清除数组的操作干扰。将数据存储在多维数组中需要更多内存,所以这里需要权衡利弊。最后,你应该使用你最得心应手的方法。

8. Dijkstra的算法:尽管A*被认为是通常最好的寻路算法(看前面的“题外话”),还是有一种另外的算法有它的可取之处-Dijkstra算法。 Dijkstra算法和A*本质是相同的,只有一点不同,就是Dijkstra算法没有启发式(H值总是0)。由于没有启发式,它在各个方向上平均搜索。正如你所预料,由于Dijkstra算法在找到目标前通常会探索更大的区域,所以一般会比A*更慢一些。

那么为什么要使用这种算法呢?因为有时候我们并不知道目标的位置。比如说你有一个资源采集单位,需要获取某种类型的资源若干。它可能知道几个资源区域,但是它想去最近的那个。这种情况,Dijkstra算法就比A*更适合,因为我们不知道哪个更近。用A*,我们唯一的选择是依次对每个目标许路并计算距离,然后选择最近的路径。我们寻找的目标可能会有不计其数的位置,我们只想找其中最近的,而我们并不知道它在哪里,或者不知道哪个是最近的。

进一步的阅读

好,现在你对一些进一步的观点有了初步认识。这时,我建议你研究我的源代码。包里面包含两个版本,一个是用C++写的,另一个用Blitz Basic。顺便说一句,两个版本都注释详尽,容易阅读,这里是链接。

    * 例子代码: A* Pathfinder (2D) Version 1.9

如果你既不用C++也不用Blitz Basic,在C++版本里有两个小的可执行文件。Blitz Basic可以在从Blitz Basic网站免费下载的Blitz Basic 3D(不是Blitz Plus)演示版上运行。Ben O'Neill提供一个联机演示可以在这里找到。

你也该看看以下的网页。读了这篇教程后,他们应该变得容易理解多了。

    * Amit的 A* 页面:这是由Amit Patel制作,被广泛引用的页面,如果你没有事先读这篇文章,可能会有点难以理解。值得一看。尤其要看Amit关于这个问题的自己的看法
    * Smart Moves:智能寻路:Bryan Stout发表在Gamasutra.com的这篇文章需要注册才能阅读。注册是免费的而且比起这篇文章和网站的其他资源,是非常物有所值的。Bryan用Delphi写的程序帮助我学习A*,也是我的A*代码的灵感之源。它还描述了A*的几种变化。
    * 地形分析:这是一格高阶,但是有趣的话题,Dave Pottinge撰写,Ensemble Studios的专家。这家伙参与了帝国时代和君王时代的开发。别指望看懂这里所有的东西,但是这是篇有趣的文章也许会让你产生自己的想法。它包含一些对 mip-mapping,influence mapping以及其他一些高级AI/寻路观点。对"flood filling"的讨论使我有了我自己的“死端”和“孤岛”的代码的灵感,这些包含在我Blitz版本的代码中。

其他一些值得一看的网站:

    * aiGuru: Pathfinding
    * Game AI Resource: Pathfinding
    * GameDev.net: Pathfinding

我同样高度推荐下面这几本书, 里面有很多关于寻路和其他AI话题的文章。 它们也附带了实例代码的CD。这些书我都买了。另外,如果你通过下面的链接购买了它们,我会从Amazon得到几个美分。:)

好了,这就是全部。如果你刚好写一个运用这些观点的程序,我想拜读一下。你可以这样联系我:

现在,好运!

译者参考文献:
 在A*寻路中使用二叉堆

A*分层寻

 

 


游戏算法整理 算法二:碰撞


1.   碰撞检测和响应

碰撞在游戏中运用的是非常广泛的,运用理论实现的碰撞,再加上一些小技巧,可以让碰撞检测做得非常精确,效率也非常高。从而增加游戏的功能和可玩性。

2D碰撞检测

2D的碰撞检测已经非常稳定,可以在许多著作和论文中查询到。3D的碰撞还没有找到最好的方法,现在使用的大多数方法都是建立在2D基础上的。

碰撞检测

碰撞的检测不仅仅是运用在游戏中,事实上,一开始的时候是运用在模拟和机器人技术上的。这些工业上的碰撞检测要求非常高,而碰撞以后的响应也是需要符合现实生活的,是需要符合人类常规认识的。游戏中的碰撞有些许的不一样,况且,更重要的,我们制作的东西充其量是商业级别,还不需要接触到纷繁复杂的数学公式。

图1

最理想的碰撞,我想莫过于上图,完全按照多边形的外形和运行路径规划一个范围,在这个范围当中寻找会产生阻挡的物体,不管是什么物体,产生阻挡以后,我们运动的物体都必须在那个位置产生一个碰撞的事件。最美好的想法总是在实现上有一些困难,事实上我们可以这么做,但是效率却是非常非常低下的,游戏中,甚至于工业中无法忍受这种速度,所以我们改用其它的方法来实现。

图2

最简单的方法如上图,我们寻找物体的中心点,然后用这个中心点来画一个圆,如果是一个3D的物体,那么我们要画的就是一个球体。在检测物体碰撞的时候,我们只要检测两个物体的半径相加是否大于这两个物体圆心的实际距离。

图3

这个算法是最简单的一种,现在还在用,但是不是用来做精确的碰撞检测,而是用来提高效率的模糊碰撞检测查询,到了这个范围以后,再进行更加精密的碰撞检测。一种比较精密的碰撞检测查询就是继续这种画圆的思路,然后把物体细分,对于物体的每个部件继续画圆,然后再继续进行碰撞检测,直到系统规定的,可以容忍的误差范围以后才触发碰撞事件,进行碰撞的一些操作。

有没有更加简单的方法呢?2D游戏中有许多图片都是方方正正的,所以我们不必把碰撞的范围画成一个圆的,而是画成一个方的。这个正方形,或者说是一个四边形和坐标轴是对齐的,所以运用数学上的一些方法,比如距离计算等还是比较方便的。这个检测方法就叫AABBs(Axis-aligned Bounding Boxes)碰撞检测,游戏中已经运用的非常广泛了,因为其速度快,效率高,计算起来非常方便,精确度也是可以忍受的。

做到这一步,许多游戏的需求都已经满足了。但是,总是有人希望近一步优化,而且方法也是非常陈旧的:继续对物体的各个部分进行细分,对每个部件做AABB 的矩形,那这个优化以后的系统就叫做OBB系统。虽然说这个优化以后的系统也不错,但是,许多它可以运用到的地方,别人却不爱使用它,这是后面会继续介绍的地方。

John Carmack不知道看的哪本书,他早在DOOM中已经使用了BSP系统(二分空间分割),再加上一些小技巧,他的碰撞做得就非常好了,再加上他发明的 castray算法,DOOM已经不存在碰撞的问题,解决了这样的关键技术,我想他不再需要在什么地方分心了,只要继续研究渲染引擎就可以了。(Windows游戏编程大师技巧P392~P393介绍)(凸多边形,多边形退化,左手定律)SAT系统非常复杂,是SHT(separating hyperplane theorem,分离超平面理论)的一种特殊情况。这个理论阐述的就是两个不相关的曲面,是否能够被一个超平面所分割开来,所谓分割开来的意思就是一个曲面贴在平面的一边,而另一个曲面贴在平面的另一边。我理解的就是有点像相切的意思。SAT是SHT的特殊情况,所指的就是两个曲面都是一些多边形,而那个超平面也是一个多边形,这个超平面的多边形可以在场景中的多边形列表中找到,而超平面可能就是某个多边形的表面,很巧的就是,这个表面的法线和两个曲面的切面是相对应的。接下来的证明,我想是非常复杂的事情,希望今后能够找到源代码直接运用上去。而我们现在讲究的快速开发,我想AABB就足以满足了。

3D碰撞检测

3D的检测就没有什么很标准的理论了,都建立在2D的基础上,我们可以沿用AABB或者OBB,或者先用球体做粗略的检测,然后用AABB和OBB作精细的检测。BSP技术不流行,但是效率不错。微软提供了D3DIntersect函数让大家使用,方便了许多,但是和通常一样,当物体多了以后就不好用了,明显的就是速度慢许多。

碰撞反应

碰撞以后我们需要做一些反应,比如说产生反冲力让我们反弹出去,或者停下来,或者让阻挡我们的物体飞出去,或者穿墙,碰撞最讨厌的就是穿越,本来就不合逻辑,查阅了那么多资料以后,从来没有看到过需要穿越的碰撞,有摩擦力是另外一回事。首先看看弹性碰撞。弹性碰撞就是我们初中物理中说的动量守恒。物体在碰撞前后的动量守恒,没有任何能量损失。这样的碰撞运用于打砖块的游戏中。引入质量的话,有的物体会是有一定的质量,这些物体通常来说是需要在碰撞以后进行另外一个方向的运动的,另外一些物体是设定为质量无限大的,这些物体通常是碰撞墙壁。

当物体碰到质量非常大的物体,默认为碰到了一个弹性物体,其速度会改变,但是能量不会受到损失。一般在代码上的做法就是在速度向量上加上一个负号。

绝对的弹性碰撞是很少有的,大多数情况下我们运用的还是非弹性碰撞。我们现在玩的大多数游戏都用的是很接近现实的非弹性碰撞,例如Pain-Killer 中的那把吸力枪,它弹出去的子弹吸附到NPC身上时的碰撞响应就是非弹性碰撞;那把残忍的分尸刀把墙打碎的初始算法就是一个非弹性碰撞,其后使用的刚体力学就是先建立在这个算法上的。那么,是的,如果需要非弹性碰撞,我们需要介入摩擦力这个因素,而我们也无法简单使用动量守恒这个公式。

我们可以采取比较简单的方法,假设摩擦系数μ非常大,那么只要物体接触,并且拥有一个加速度,就可以产生一个无穷大的摩擦力,造成物体停止的状态。

基于别人的引擎写出一个让自己满意的碰撞是不容易的,那么如果自己建立一个碰撞系统的话,以下内容是无法缺少的:

–     一个能够容忍的碰撞系统

–     一个从概念上可以接受的物理系统

–     质量

–     速度

–     摩擦系数

–     地心引力

http://www.gamasutra.com/features/20000330/bobic_01.htm
http://www.gamasutra.com/features/20000330/bobic_02.htm
http://www.gamasutra.com/features/20000330/bobic_03.htm

这三篇是高级碰撞检测。

 

 


游戏算法整理 算法三:寻路算法新思维

目前常用寻路算法是A*方式,原理是通过不断搜索逼近目的地的路点来获得。

如果通过图像模拟搜索点,可以发现:非启发式的寻路算法实际上是一种穷举法,通过固定顺序依次搜索人物周围的路点,直到找到目的地,搜索点在图像上的表现为一个不断扩大的矩形。如下:

   

很快人们发现如此穷举导致搜索速度过慢,而且不是很符合逻辑,试想:如果要从(0,0)点到达(100,0)点,如果每次向东搜索时能够走通,那么干吗还要搜索其他方向呢?所以,出现了启发式的A*寻路算法,一般通过 已经走过的路程 + 到达目的地的直线距离 代价值作为搜索时的启发条件,每个点建立一个代价值,每次搜索时就从代价低的最先搜索,如下:

   

综上所述,以上的搜索是一种矩阵式的不断逼近终点的搜索做法。优点是比较直观,缺点在于距离越远、搜索时间越长。

现在,我提出一种新的AI寻路方式——矢量寻路算法

通过观察,我们可以发现,所有的最优路线,如果是一条折线,那么、其每一个拐弯点一定发生在障碍物的突出边角,而不会在还没有碰到障碍物就拐弯的情况:如下图所示:

 

我们可以发现,所有的红色拐弯点都是在障碍物(可以认为是一个凸多边形)的顶点处,所以,我们搜索路径时,其实只需要搜索这些凸多边形顶点不就可以了吗?如果将各个顶点连接成一条通路就找到了最优路线,而不需要每个点都检索一次,这样就大大减少了搜索次数,不会因为距离的增大而增大搜索时间。

这种思路我尚未将其演变为算法,姑且提出一个伪程序给各位参考:

1.建立各个凸多边形顶点的通路表TAB,表示顶点A到顶点B是否可达,将可达的顶点分组保存下来。如: ( (0,0) (100,0) ),这一步骤在程序刚开始时完成,不要放在搜索过程中空耗时间。

2.开始搜索A点到B点的路线

3.检测A点可以直达凸多边形顶点中的哪一些,挑选出最合适的顶点X1。

4.检测与X1相连(能够接通)的有哪些顶点,挑出最合适的顶点X2。

5.X2是否是终点B?是的话结束,否则转步骤4(X2代入X1)

如此下来,搜索只发生在凸多边形的顶点,节省了大量的搜索时间,而且找到的路线无需再修剪锯齿,保证了路线的最优性。

这种方法搜索理论上可以减少大量搜索点、缺点是需要实现用一段程序得出TAB表,从本质上来说是一种空间换时间的方法,而且搜索时A*能够用的启发条件,在矢量搜索时依然可以使用。

 

 


游戏算法整理 算法四:战略游戏中的战争模型算法的初步探讨

 
  《三国志》系列游戏相信大家都有所了解,而其中的(宏观)战斗时关于双方兵力,士气,兵种克制,攻击力,增援以及随战争进行兵力减少等数值的算法是十分值得研究的。或许是由于简单的缘故,我在网上几乎没有找到相关算法的文章。下面给出这个战争的数学模型算法可以保证游戏中战争的游戏性与真实性兼顾,希望可以给有需要这方面开发的人一些启迪。
假设用x(t)和y(t)表示甲乙交战双方在t时刻的兵力,如果是开始时可视为双方士兵人数。

  假设每一方的战斗减员率取决于双方兵力和战斗力,用f(x,y)和g(x,y)表示,每一方的增援率是给定函数用u(t)和v(t)表示。

  如果双方用正规部队作战(可假设是相同兵种),先分析甲方的战斗减员率f(x,y)。可知甲方士兵公开活动,处于乙方没一个士兵的监视和杀伤范围之内,一但甲方的某个士兵被杀伤,乙方的火力立即集中在其余士兵身上,所以甲方的战斗减员率只与乙方的兵力有关可射为f与y成正比,即f=ay,a表示乙方平均每个士兵对甲方士兵的杀伤率(单位时间的杀伤数),成为乙方的战斗有效系数。类似g= -bx
这个战争模型模型方程1为

x’(t)= -a*y(t)+u(t) x’(t)是x(t)对于t 的导数
y’(t)= -b*x(t)+v(t) y’(t)是y(t)对于t的导数

利用给定的初始兵力,战争持续时间,和增援兵力可以求出双方兵力在战争中的变化函数。
(本文中解法略)

如果考虑由于士气和疾病等引起的非战斗减员率(一般与本放兵力成正比,设甲乙双方分别为h,w)

可得到改进战争模型方程2:

x’(t)= -a*y(t)-h*x(t)+u(t)
y’(t)= -b*x(t)-w*y(t)+v(t)

利用初始条件同样可以得到双方兵力在战争中的变化函数和战争结果。

此外还有不同兵种作战(兵种克制)的数学模型:
模型1中的战斗有效系数a可以进一步分解为a=ry*py*(sry/sx),其中ry是乙方的攻击率(每个士兵单位的攻击次数),py是每次攻击的命中率。(sry/sx)是乙方攻击的有效面积sry与甲方活动范围sx之比。类似甲方的战斗有效系数b=rx*px*(srx/sy),rx和px是甲方的攻击率和命中率,(srx/sy)是甲方攻击的有效面积与乙方活动范围sy之比。由于增加了兵种克制的攻击范围,所以战斗减员率不光与对方兵力有关,而且随着己放兵力增加而增加。因为在一定区域内,士兵越多被杀伤的就越多。

方程
x’(t)= -ry*py*(sry/sx)*x(t)*y(t)-h*x(t)+u(t)
y’(t)= -rx*px*(srx/sy)*x(t)*y(t)-w*y(t)+u(t)

 

 


游戏算法整理 算法五:飞行射击游戏中的碰撞检测

  在游戏中物体的碰撞是经常发生的,怎样检测物体的碰撞是一个很关键的技术问题。在RPG游戏中,一般都将场景分为许多矩形的单元,碰撞的问题被大大的简化了,只要判断精灵所在的单元是不是有其它的东西就可以了。而在飞行射击游戏(包括象荒野大镖客这样的射击游戏)中,碰撞却是最关键的技术,如果不能很好的解决,会影响玩游戏者的兴趣。因为飞行射击游戏说白了就是碰撞的游戏——躲避敌人的子弹或飞机,同时用自己的子弹去碰撞敌人。

  碰撞,这很简单嘛,只要两个物体的中心点距离小于它们的半径之和就可以了。确实,而且我也看到很多人是这样做的,但是,这只适合圆形的物体——圆形的半径处处相等。如果我们要碰撞的物体是两艘威力巨大的太空飞船,它是三角形或矩形或其他的什么形状,就会出现让人尴尬的情景:两艘飞船眼看就要擦肩而过,却出人意料的发生了爆炸;或者敌人的子弹穿透了你的飞船的右弦,你却安然无恙,这不是我们希望发生的。于是,我们需要一种精确的检测方法。

  那么,怎样才能达到我们的要求呢?其实我们的前辈们已经总结了许多这方面的经验,如上所述的半径检测法,三维中的标准平台方程法,边界框法等等。大多数游戏程序员都喜欢用边界框法,这也是我采用的方法。边界框是在编程中加进去的不可见的边界。边界框法,顾名思义,就是用边界框来检测物体是否发生了碰撞,如果两个物体的边界框相互干扰,则发生了碰撞。用什么样的边界框要视不同情况而定,用最近似的几何形状。当然,你可以用物体的准确几何形状作边界框,但出于效率的考虑,我不赞成这样做,因为游戏中的物体一般都很复杂,用复杂的边界框将增加大量的计算,尤其是浮点计算,而这正是我们想尽量避免的。但边界框也不能与准确几何形状有太大的出入,否则就象用半径法一样出现奇怪的现象。

  在飞行射击游戏中,我们的飞机大多都是三角形的,我们可以用三角形作近似的边界框。现在我们假设飞机是一个正三角形(或等要三角形,我想如果谁把飞机设计成左右不对称的怪物,那他的审美观一定有问题),我的飞机是正着的、向上飞的三角形,敌人的飞机是倒着的、向下飞的三角形,且飞机不会旋转(大部分游戏中都是这样的)。我们可以这样定义飞机:中心点O(Xo,Yo),三个顶点P0(X0,Y0)、P1(X1,Y1)、P2(X2,Y2)。中心点为正三角形的中心点,即中心点到三个顶点的距离相等。接下来的问题是怎样确定两个三角形互相干扰了呢?嗯,现在我们接触到问题的实质了。如果你学过平面解析几何,我相信你可以想出许多方法解决这个问题。判断一个三角形的各个顶点是否在另一个三角形里面,看起来是个不错的方法,你可以这样做,但我却发现一个小问题:一个三角形的顶点没有在另一个三角形的里面,却可能发生了碰撞,因为另一个三角形的顶点在这个三角形的里面,所以要判断两次,这很麻烦。有没有一次判断就可以的方法?我们把三角形放到极坐标平面中,中心点为原点,水平线即X轴为零度角。我们发现三角形成了这个样子:在每个角度我们都可以找到一个距离,用以描述三角形的边。既然我们找到了边到中心点的距离,那就可以用这个距离来检测碰撞。如图一,两个三角形中心点坐标分别为(Xo,Yo)和 (Xo1,Yo1),由这两个点的坐标求出两点的距离及两点连线和X轴的夹角θ,再由θ求出中心点连线与三角形边的交点到中心点的距离,用这个距离与两中心点距离比较,从而判断两三角形是否碰撞。因为三角形左右对称,所以θ取-90~90度区间就可以了。哈,现在问题有趣多了,-90~90度区间正是正切函数的定义域,求出θ之后再找对应的边到中心点的距离就容易多了,利用几何知识,如图二,将三角形的边分为三部分,即图2中红绿蓝三部分,根据θ在那一部分而分别对待。用正弦定理求出边到中心点的距离,即图2中浅绿色线段的长度。但是,如果飞机每次移动都这样判断一次,效率仍然很低。我们可以结合半径法来解决,先用半径法判断是否可能发生碰撞,如果可能发生碰撞,再用上面的方法精确判断是不是真的发生了碰撞,这样基本就可以了。如果飞机旋转了怎么办呢,例如,如图三所示飞机旋转了一个角度α,仔细观察图三会发现,用(θ-α)就可以求出边到中心点的距离,这时你要注意边界情况,即(θ-α)可能大于90度或小于-90度。啰罗嗦嗦说了这么多,不知道大家明白了没有。我编写了一个简单的例程,用于说明我的意图。在例子中假设所有飞机的大小都一样,并且没有旋转。



/////////////////////////////////////////////////////////////////////
            //example.cpp
            //碰撞检测演示
            //作者 李韬
            /////////////////////////////////////////////////////////////////////
            //限于篇幅,这里只给出了碰撞检测的函数
            //define/////////////////////////////////////////////////////////////
            #define NUM_VERTICES 3
            #define ang_30 -0.5236
            #define ang60    1.0472
            #define ang120 2.0944
            //deftype////////////////////////////////////////////////////////////
            struct object
            {
            float xo, yo;
            float radio;
            float x_vel, y_vel;
            float vertices[NUM_VERTICES][2];
            }
             
            //faction/////////////////////////////////////////////////////////////
            //根据角度求距离
            float AngToDis(struct object obj, float angle)
            {
            float dis, R;
            R = obj.radius;
            if (angle <= ang_30)
            dis = R / (2 * sin(-angle));
            else if (angle >= 0)
            dis = R / (2 * sin(angle + ang60));
            else dis = R / (2 * sin(ang120 - angle));
            return dis;
            }
             
            //碰撞检测
            int CheckHit(struct object obj1, struct object obj2)
            {
            float deltaX, deltaY, angle, distance, bumpdis;
            deltaX = abs(obj1.xo - obj2.xo);
            deltaY = obj1.yo - obj2.yo;
            distance = sqrt(deltaX * deltaX + deltaY * deltaY);
            if (distance <= obj.radio)
            {
            angle = atan2(deltaY, deltaX);
            bumpdis1 = AngToDis(obj1, angle);
            return (distance <= 2 * bumpdis);
            }
            ruturn 0;
            }
            //End//////////////////////////////////////////////////////////////

  上面程序只是用于演示,并不适合放在游戏中,但你应该明白它的意思,以便写出适合你自己的碰撞检测。游戏中的情况是多种多样的,没有哪种方法能适应所有情况,你一定能根据自己的情况找到最适合自己的方法。

 

 


游戏算法整理 算法六:关于SLG中人物可到达范围计算的想法

下面的没有经过实践,因此很可能是错误的,觉得有用的初学朋友读一读吧:)
希望高人指点一二 :)

简介:
在标准的SLG游戏中,当在一个人物处按下鼠标时,会以人物为中心,向四周生成一个菱形的可移动区范围,如下:

    0
  000
00s00
  000
   0

这个图形在刚开始学习PASCAL时就应该写过一个画图的程序(是否有人怀念?)。那个图形和SLG的扩展路径一样。

一、如何生成路径:
从人物所在的位置开始,向四周的四个方向扩展,之后的点再进行扩展。即从人物所在的位置从近到远进行扩展(类似广宽优先)。

二、扩展时会遇到的问题:
1、当扩展到一个点时,人物的移动力没有了。
2、当扩展的时候遇到了一个障碍点。
3、当扩展的时候这个结点出了地图。
4、扩展的时候遇到了一个人物正好站在这个点(与2同?)。
5、扩展的点已经被扩展过了。当扩展节点的时候,每个节点都是向四周扩展,因此会产生重复的节点。

当遇到这些问题的时候,我们就不对这些节点处理了。在程序中使用ALLPATH[]数组记录下每一个等扩展的节点,不处理这些问题节点的意思就是不把它们加入到ALLPATH[]数组中。我们如何去扩展一个结点周围的四个结点,使用这个结点的坐标加上一个偏移量就可以了,方向如下:

   3
   0 2
   1

偏移量定义如下:
int offx[4] = { -1, 0, 1, 0 };
int offy[4] = { 0, 1, 0, -1 };


扩展一个节点的相邻的四个节点的坐标为:
for(int i=0; i<4; i )
{
     temp.x = temp1.x offx[i];
     temp.y = temp1.y offy[i];
}


三、关于地图的结构:
1、地图的二维坐标,用于确定每个图块在地图中的位置。
2、SLG中还要引入一个变量decrease表示人物经过这个图块后他的移动力的减少值。例如,一个人物现在的移动力为CurMP=5,与之相领的图块的decrease=2;这时,如果人物移动到这里,那它的移动力变成CurMP-decrease。
3、Flag域:宽度优先中好像都有这个变量,有了它,每一个点保证只被扩展一次。防止一个点被扩展多次。(一个点只被扩展一次真的能得到正确的结果吗?)
4、一个地图上的图块是否可以通过,我们使用了一个Block代表。1---不可以通过;0---可以通过。

这样,我们可以定义一个简单的地图结构数组了:

#define MAP_MAX_WIDTH 50
#define MAP_MAX_HEIGHT 50
typedef struct tagTILE{
     int x,y,decrease,flag,block;
}TILE,*LPTILE;
TILE pMap[MAP_MAX_WIDTH][MAP_MAX_HEIGHT];


以上是顺序数组,是否使用动态的分配更好些?毕竟不能事先知道一个地图的宽、高。

四、关于路径:
SLG游戏中的扩展路径是一片区域(以人物为中心向四周扩展,当然,当人物移动时路径只有一个)。这些扩展的路径必须要存储起来,所有要有一个好的结构。我定义了一个结构,不是很好:

typedef struct tagNODE{
     int x,y;   //扩展路径中的一个点在地图中的坐标。
     int curmp; //人物到了这个点以后的当前的移动力。
}NODE,*LPNODE;

上面的结构是定义扩展路径中的一个点的结构。扩展路径是点的集合,因此用如下的数组进行定义:

NODE AllPath[PATH_MAX_LENGTH];

其中的PATH_MAX_LENGTH代表扩展路径的点的个数,我们不知道这个扩展的路径中包含多少个点,因此定义一个大一点的数字使这个数组不会产生溢出:

#define PATH_MAX_LENGTH 200


上面的这个数组很有用处,以后的扩展就靠它来实现,它应该带有两个变量nodecount 代表当前的数组中有多少个点。当然,数组中的点分成两大部分,一部分是已经扩展的结点,存放在数组的前面;另一部分是等扩展的节点,放在数组的后面为什么会出现已扩展节点和待扩展节点?如下例子:

当前的人物坐标为x,y;移动力为mp。将它存放到AllPath数组中,这时的起始节点为等扩展的节点。这时我们扩展它的四个方向,对于合法的节点(如没有出地图,也没有障碍......),我们将它们存放入AllPath数组中,这时的新加入的节点(起始节点的子节点)就是等扩展结点,而起始节点就成了已扩展节点了。下一次再扩展节点的时候,我们不能再扩展起始节点,因为它是已经扩展的节点了。我们只扩展那几个新加入的节点(待扩展节点),之后的情况以此类推。那么我们如何知道哪些是已经扩展的结点,哪些是等扩展的节点?我们使用另一个变量cutflag,在这个变量所代表的下标以前的结点是已扩展节点,在它及它之后是待扩展结点。

五、下面是基本框架(只扩展一个人物的可达范围):

int nodecount = 0; //AllPath数组中的点的个数(包含待扩展节点和已经扩展的节点
            int cutflag = 0; //用于划分已经扩展的节点和待扩展节点
            NODE temp; //路径中的一个点(临时)
            temp.x = pRole[cur] - >x; //假设有一个关于人物的类,代表当前的人物
            temp.y = pRole[cur] - >y;
            temp.curmp = pRole[cur] - >MP; //人物的最大MP
            AllPath[nodecount] = temp; //起始点入AllPath,此时的起始点为等扩展的节点
             
            while (curflag < nodecount) { //数组中还有待扩展的节点
            int n = nodecount; //记录下当前的数组节点的个数。
            for (int i = cutflag; i < nodecount; i) { //遍历待扩展节点
            for (int j = 0; j < 4; j) { //向待扩展节点的四周各走一步
            //取得相邻点的数据
            temp.x = AllPath[i].x offx[j];
            temp.y = AllPath[i].y offy[j];
            temp.curmp = AllPath[i].curmp -
            pMap[AllPath[i].x][AllPath[i].y].decrease;
            //以下为检测是否为问题点的过程,如果是问题点,不加入AllPath数组,继续处理其它的点
            if (pMap[temp.x][temp.y].block) {
            continue; //有障碍,处理下一个节点
            }
            if (temp.curmp < 0) {
            continue; //没有移动力了
            }
            if (temp.x < 0 || temp.x >= MAP_MAX_WIDTH || temp.y < 0 ||
            temp.y >= MAP_MAX_HEIGHT) {
            continue; //出了地图的范围
            }
            if (pMap[temp.x][temp.y].flag) {
            continue; //已经扩展了的结点
            }
            //经过了上面几层的检测,没有问题的节点过滤出来,可以加入AllPath
            AllPath[nodecount] = temp;
            }
            pMap[AllPath[i].x][AllPath[i].y].flag = 1; //将已经扩展的节点标记为已扩展节点
            }
            cutflag = n; //将已扩展节点和待扩展节点的分界线下标值移动到新的分界线
            }
            for (int i = 0; i < nodecount; i) {
            pMap[AllPath[i].x][AllPath[i].y].bFlag = 0; //标记为已扩展节点的标记设回为待扩展节点。
            }

 

 


游戏算法整理 算法七 无限大地图的实现

这已经不是什么新鲜的东西了,不过现在实在想不到什么好写,而且版面上又异常冷清,我再不说几句就想要倒闭了一样。只好暂且拿这个东西来凑数吧。
无限大的地图,听上去非常吸引人。本来人生活的空间就是十分广阔的,人在这么广阔的空间里活动才有一种自由的感觉。游戏中的虚拟世界由于受到计算机存储空间的限制,要真实地反映这个无限的空间是不可能的。而对这个限制最大的,就是内存的容量了。所以在游戏的空间里,我们一般只能在一个狭小的范围里活动,在一般的RPG中,从一个场景走到另一个场景,即使两个地方是紧紧相连的,也要有一个场景的切换过程,一般的表现就是画面的淡入淡出。

这样的场景切换给人一种不连续的感觉(我不知道可不可以把这种称作“蒙太奇”:o)),从城内走到城外还有情可缘,因为有道城墙嘛,但是两个地方明明没有界限,却偏偏在这一边看不到另外一边,就有点不现实了。当然这并不是毛病,一直以来的RPG都是遵循这个原则,我们(至少是我)已经习惯了这种走路的方式。我在这里说的仅仅是另外一种看起来更自然一点的走路方式,仅此而已。

当然要把整个城市的地图一下子装进内存,现在的确是不现实的,每一次只能放一部分,那么应该怎么放才是我们要讨论的问题。

我们在以前提到Tile方法构造地图时就谈到过Tile的好处之一就是节省内存,这里仍然可以借鉴Tile的思想。我们把整个大地图分成几块,把每一块称作一个区域,在同一时间里,内存中只保存相邻的四块区域。这里每个区域的划分都有一定的要求:每个区域大小应该相等这是一定的了,不然判断当前屏幕在哪个区域中就成了一个非常令人挠头的事;另外每个区域的大小都要大于屏幕的大小,也只有这样才能保证屏幕(就是图中那块半透明的蓝色矩形)在地图上荡来荡去的时候,最多同时只能覆盖四个区域(象左图中所表示的),内存里也只要保存四个区域就足够了;还有一点要注意的,就是地图上的建筑物(也包括树啦,大石头啦什么的)必须在一个区域内,这样也是为了画起来方便,当然墙壁——就是那种连续的围墙可以除外,因为墙壁本来就是一段一段拼起来的。

我们在程序中可以设定4个指针来分别指向这4个区域,当每次主角移动时,就判断当前滚动的屏幕是否移出了这四个区域,如果移出了这四个区域,那么就废弃两个(或三个)已经在目前的四个相邻区域中被滚出去的区域(说得很别扭,各位见谅),读入两个(或三个)新滚进来的区域,并重新组织指针。这里并不涉及内存区域的拷贝。

这样的区域划分方法刚好适合我们以前提到的Tile排列方法,只要每个区域横向Tile的个数是个偶数就行了,这样相邻的两个区域拼接起来刚好严丝合缝,而且每个区域块的结构完全一致,没有那些需要重复保存的Tile(这个我想我不需要再画图说明了,大家自己随便画个草图就看得出来了)。在文件中的保存方法就是按一个个区域分别保存,这样在读取区域数据时就可以直接作为一整块读入,也简化了程序。另外还有个细节就是,我们的整个地图可能不是一个规则的矩形,可能有些地方是无法达到的,如右图所示,背景是黑色的部分代表人物不能达到的地方。那么在整个地图中,这一部分区域(在图中蓝色的3号区域)就可以省略,表现在文件存储上就是实际上不存储这一部分区域,这样可以节省下不少存储空间。对于这种地图可以用一个稀疏矩阵来存储,大家也可以发挥自己的才智用其他对于编程来说更方便的形式来存储地图。  

这就是对无限大地图实现的一种方法,欢迎大家提出更好的方法。也希望整个版面能够活跃一点。

posted @ 2009-11-07 13:18 小强摩羯座 阅读(691) | 评论 (0)编辑 收藏

天是09年1月1日,一个全新的开始,我要珍惜当下每一分一秒!让当下每个呼吸都是崭新的!

新的一年,我希望自已对人生、对生命,能够有一个全新的认识。谢谢陈爷爷前几天送我的那

套《康熙起居注》,最近也越来越认识到,要多读书,读好书的重要性,能够天天在家读书实

在也是一种很大的幸福,我要珍惜!乾隆皇帝十九岁就写下了《读书以明理为先》的文章,说

明读书对明理、对做人的重要性,立身以至诚为本,读书以明理为先!今年还有一个心愿就是

用小楷临摹一遍康熙皇帝抄写的<金刚经>,也终于明白了其实写字这个过程本身也是在训练一

种心境,所以写字是写的一种心境,而不在与字的美丑。一个有着强大心力的人,才可能真正

意义的永无不胜,学佛学道,无论学什么,其实最大的敌人就是自已认为的那颗狂燥不安的心,

黑暗中总有惺惺相惜的敌人!纯静朴素的大道,无时无刻都存在于我们身边,上达于天,下入于

地,化育万物。道法自然,或许真正获得了心灵上的自由,才能达到至人的境界:游于物之所不

得遁而皆存。遵循自然法则因缘和合,才是顺天行事,缘份就像一针一眼,谁也逃不了,如果这

辈子真有一个能把名和利都看的很淡的人,并且愿意和我过一种很简单的生活,我一定要让他成

为这世上第二幸福的人,因为最幸福的人是我!我要跟他一辈子不离不弃,看日出看日落,看北

斗星看流星雨,直到老!09年,让我牵着庄子的手,在轮回的战场中,做个勇敢的战士!

posted @ 2009-11-03 14:21 小强摩羯座 阅读(538) | 评论 (0)编辑 收藏

pku3233:Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.

分析:矩阵相乘O(n^3), 有k次,则复杂度为n^3*k。

使用矩阵技巧,构造:
    B=  |  A  A  |
          |  O  I   |
则B的乘方的结果其右上会是S,其他三个不变。此时化成了矩阵乘方问题,此时可以使用反复平方法,这样复杂度为(2n)^3*logk


反复平方法,迭代版的, 以整数a^m为例:
int pow(int a, int m)
{
  
int y = 1;
  
int z = a;
  
while(m > 0)
  
{  
     
if( (n&1)==1 ) y = y*z;
     z 
= z * z;
     n 
= n >> 1;
  }

  
return y;
}
递归的可以不用变量Z,要简单些,但是要注意了递归的调用顺序和结果的存储。

  


posted @ 2009-11-02 21:26 小强摩羯座 阅读(244) | 评论 (0)编辑 收藏

仅列出标题
共20页: 上一页 1 2 3 4 5 6 7 8 9 下一页 Last