Feeling

    三人行,必有我师焉

   ::  :: 新随笔 :: 联系 ::  :: 管理 ::
  185 随笔 :: 0 文章 :: 392 评论 :: 0 Trackbacks
    超新星是最激烈的天体物理现象,它的爆发过程只延续大约一秒鐘,但是释放出极大的能量,超新星爆炸的光度可能相当於1,000万亿颗恆星同时发出的光芒。爆炸时產生的高能粒子是地面上任何加速器都不能达到的, 它提供一个在极端条件下进行的核融合,以及与高能粒子相互作用的实验,包括爆炸过程在内,这样的条件在地面上是永远无法实现的。在周期表中原子序数比铁更高的元素(如锌、金或铅)全都是在超新星爆炸中產生的。超新星爆炸标示了一颗恆星壮烈的死亡,但是也触发了新一代的恆星诞生。

超新星Supernova 1994D (表示是1994年里第4个发现的超新星,第二十六个以后的则是用aa、ab、ac等等)
超新星Supernova 1994D

天文学家把超新星按它们光谱上的不同元素的吸收线来分成数个类型:
I型:没有氢吸收线。
Ia型:没有氢、氦吸收线,有硅吸收线。
Ib型:没有氢吸收线,有氦吸收线。
Ic型:没有氢、氦、硅吸收线。
II型:有氢吸收线。

I型的超新星一般都比II型超新星亮。一般学生最先知道的超新星是II型(Type II)超新星, 是大质量恆星死亡后, 成為黑洞或中子星前的超新星爆炸產生的。 Ia型超新星(Type Ia supernova, Ia唸成one-a, 不是i-a).一般相信(会写一般相信, 就表示并非百分之百有定论)是来自含有白矮星与巨星的双星系统, 白矮星从巨星的外层大气中逐渐吸收质量, 待白矮星的质量超过所谓"钱的限制(Chandrasehkar's limit)"后, 会引发重力塌缩及超新星爆炸。

这种双星系统的爆炸分为两种,一种是新星的爆炸,另外一种则是更剧烈的超新星爆炸。

新星 (Nova) 爆炸:

Nova(复数Novae)在拉丁文中代表「新的」,在天文学中「新星」指的是看来像是新產生的星星。新星会在天空中突然变亮,维持几天后,逐渐变暗,至数月后才看不见。但是事实上「新星」并非一个新诞生的星星,而是一颗年老的白矮星爆炸所形成。

新星爆炸是由於一颗普通星星的质量经由吸积盘转移到一颗白矮星上。由於这些物质是由一颗普通的星星上来的,所以裡面含有许多未经核融合的成分,其中氢就佔得最多。当这些物质聚集在白矮星的表面时,形成一层未经核融合反应的燃料层。当这层物质愈来愈厚,它也变得愈来愈密、愈来愈热,最后到达可以產生氢的核融合的条件,突然產生爆炸。

為了明白这些爆炸如何產生,我们要先了解质量如何掉入一颗星球上。

吸积盘 (Accretion Disks)

当伴星质量往白矮星掉落时,由於角动量守恆,事实上物质无法直接掉在白矮星上,而是绕著白矮星转。我们用一个日常生活举例︰一个装满水的洗脸槽,槽内的水原本有些轻微的扰动,不过它的旋转并不明显,一旦我们将塞子拔掉,往排水口流出的水由於角动量守恆,所以变成了漩涡。同样的,掉入白矮星的气体也会因同样的效应形成一个旋转盘,称為吸积盘。

这两颗恒星是如何产生如此奇怪的复杂结构呢?大部分的恆星是属於多星系统的一员。有些紧邻的双星,其中一颗星的物质会掉入环绕著另一颗星的吸积盘上。然而只须扳一扳手指头就可以数出来的紧邻双星系统,是属於中度的极化双星系统,在这个系统中,白矮星的磁场会将内吸积盘向外推出,使得物质只能从磁极附近掉入。上图所示由画家所描绘的中度的极化双星系统,是著名的英仙座DQ (DQ Hercules)系统。在前方的白矮星与另一颗一般的星靠的很近,以至於白矮星会掠夺另一颗的外围大气。当白矮星自转时,被吸入的气柱也跟著一起转起来。所谓的中度极化,是因為它所发出的光的极化程度 是另一种没有吸积盘的极化双星的一半而已。中度的极化双星系统是激变星中的一种类型。
中度极化双星系统中的吸积盘

在吸积盘中会发生两件重要的事情︰第一,盘中的气体因為摩擦力及潮汐力而变得十分热。这个吸积盘扮演煞车的角色,让气体旋转速度变慢,掉入白矮星内。靠吸积盘内部的气体温度可以超过100万K,气体会发生强烈的X光。另外,从吸积盘往内掉落至白矮星上的物质会发出巨大的爆炸。

新星的爆炸将白矮星的外层以每秒几千公里的速度往外炸开。虽然往外炸开的物质质量仅有0.0001倍的太阳质量,但是它的光度可达太阳的10万倍。当外层膨胀得愈来愈大,且愈来愈稀薄时,就逐渐变冷,新星看来就逐渐黯淡了。

这个爆炸几乎不会影响这颗白矮星和它的伴星,所以同样的质量转移的过程又开始进行。白矮星外层的燃料层加厚的速度与质量转移的速度有关。根据这个理论,有些新星需要1,000到10万年来累积足够厚的燃料层来產生爆炸;有些则仅需要几週。再发新星 (recurrent novae)、矮新星 (dwarf novae) 及一些相关的不规则变星 (irregular variable stars) 都经歷类似新星的较小规模的爆炸。虽然这几型星球并不一样,不过它们都经歷质量累积在吸积盘的过程。

在名为蛇夫座RS (RS Ophiuchi)的双星系统里,壮观的爆炸不停的重复发生。大约每隔20年,随著红巨星倾洩足够的氢气到它的白矮伴星,就会在白矮星的表面引发闪亮的热融合爆炸。离我们有二千光年远的蛇夫座RS星,因新星爆炸而大幅增亮,成為肉眼可见的天体。在上面这幅图示中,右方的天体就是这颗红巨星,白矮星则在左端明亮吸积盘的中心。随著恆星相互绕行,云气不断地由红巨星流向白矮星。天文学家认为在接下来十万年的某个时间点,当足够的质量累积在白矮星上,让它的质量超过钱氏极限 (Chandrasekhar Limit)时,就会造成更强烈的超新星爆炸。事实上宇宙中有一半以上的恆星都是双星系统。大部分的双星系统两颗星星都分得很开,所以当其中一颗膨胀并塌缩时不会影响它的伴星。但是有些双星距离很近,当质量较大的星星开始膨胀时,会与它的伴星有些特别的交互作用。
不断发生爆炸的蛇夫座RS (RS Ophiuchi)的双星系统

超新星爆炸:

经典的观点认为,热核爆炸超新星——也就是Ia型超新星——爆炸发生在白矮星——一种燃烧完核燃料(Nuclear Fuel)并且全部由碳(Carbon)和氧(Oxygen)组成的星体——从一个邻近的伴星吸积物质的时候发生。在吸积的同时白矮星会收缩从而导致密度和温度上升。这个过程一直进行到白矮星的质量达到质量极限——也就是所谓的Chandrasekhar质量,大概等于1.4倍的太阳质量。当达到这个状态的时候,由于热核反应不稳定性导致核聚变放出大量的能量,将白矮星外层的物质以很高的速度喷射出去,速度可以达到光速的百分之几。核反应可以将大概0.6个太阳质量的白矮星物质变成一种同位素:放射性的镍56(Nickel-56)。这种同位素的衰变——先是衰变到钴56(Cobalt-56),然后再衰变到铁56(Iron-56)——提供了一个延迟能量来源,这可以维持喷射出去的物质处于高温,导致超新星获得比十亿个太阳更强的峰值光度(光度的定义为单位时间内辐射出来的能量)。

天文学家对于Ia型超新星具有浓厚的兴趣,因为它们可以被用来探索宇宙的膨胀历史。这种超新星的光度很大,这就意味著能够在很远的地方看到——由于光的传播速度有限,这同时也意味著可以看到遥远的过去——而它们的相对视亮度则可以被用来推测它们的距离。超新星光变曲线和峰值光度之间的经验关系可以用来很精确地确定超新星的光度。

所有的Ia型超新星, 当它们的亮度达最高点时,都有著同样的绝对亮度。因为它们发生爆炸的原因都完全相同,起始于白矮星吸收伴星物质的过程一直进行到白矮星的质量达到质量极限,由于热核反应不稳定性导致核聚变放出大量的能量。

但是1996年后, 这一点被新观测给修正了。由Howell等人发现的超新星是SNLS-03D3bb(或者SN2003fg)在光学波段具有发射和吸收谱,由这些信息可以确定这颗超新星是Ia型的。这就意味著它的爆炸是由前面描述的失控热核反应驱动的,而不是驱动其它类型超新星的引力塌缩。但是这颗超新星的峰值光度是典型Ia型超新星爆炸事例的2.2倍。超新星爆炸的光度取决于镍56的质量,在这个案例中,产生这么大的光度需要有1.3倍太阳质量的镍56。产生这么多的镍要求初始喷射物质的质量远远超过Chandrasekhar极限允许的1.4倍的太阳质量。这是因为核聚变不仅产生镍,而且还稳定的铁系同位素,而且SN2003fg的光学谱显示存在更轻元素比如硅(Silicon)、硫磺(Sulphur)和钙(Calcium)的存在。同时还可能存在没有燃烧完全的碳和氧。把这些都考虑在一起,Howell等人估计喷射物的质量达到了2.1个太阳质量。

但是为什么白矮星可以如此之重呢?一种可能是两个邻近的白矮星相互绕转最后融合。这种情况可以通过由引力波导致的星体角动量损失产生。但是这种情况下通常会产生的是中子星而不是超新星爆发。一个可能性更大的解释是,从普通伴星那里被白矮星吸积过来的物质导致白矮星的角动量增加,从而使得白矮星高速转动,可以克服引力的吸引,从而使得白矮星在爆炸之前具有超过极限的质量。

在这种情况下白矮星可以具有多大的质量取决于角动量在星体内部如何分布,也就是说白矮星作为一个整体转动还是各不同部位的转动不一样。较差转动(Differential Rotation)可以使得白矮星的质量达到四倍太阳质量之巨,考虑到从伴星吸积物质有一定限度,白矮星的质量可能被限制在大概两倍太阳质量。

由于多普勒效应的结果——移动物体发出的辐射谱发生变化——SN2003fg的光谱被展宽,而光谱变化的程度显示喷射物质的速度比起典型Ia型超新星来要低。这和超极限质量白矮星是符合的,因为虽然在这种情况下核聚变产生的能量更多,而同时也造成物质脱离引力束缚需要具有更高的能量。高束缚能造成较低的喷射速度。

为了更好地了解Ia型超新星,确定喷射物质的质量分布是非常关键的。比如Ia型超新星是否普遍具有超极限的质量?它们的质量在1.4到2.1倍太阳质量之间有平滑的分布?Howell等人对超新星样例所作的一项分析表明情况可能确实如此。目前的数据和位于质量极限附近的典型Ia型超新星是相容的,而SN2003fg则显得比较例外。这种解释主要是受到了不同以往的超大光度以及对于光度-光变关联关系的破坏这两种异常现象的启发。虽然这种Ia型超新星的亮度非常大,光变曲线的形状则是典型的。

但是这种Ia型超新星爆发现象的发现并不意味著用Ia型超新星作为宇宙学距离指示器有问题。如果假设SN2003fg符合光度-光变形状经验关系,就有可能极大地低估它的光度,从而低估它的距离。但是由于这颗超新星是如此地奇特,在一项宇宙学研究中已经将其排除。光度-光变形状关系是经验性的,并且对Ia型超新星的质量分布没有人为假设。这就已经意味著这个经验关系可以容纳白矮星质量对质量极限有少许偏离,但这并不包括SN2003fg这种情形。

无论如何, 我们可以透过观测Ia型超新星而得知它们的绝对亮度. 一但有了绝对亮度, 和观测到的亮度比较后, 透过平方反比律, 我们就可以算出该超新星的距离, 也就是它的母星系的距离。
posted on 2007-04-04 17:40 三人行,必有我师焉 阅读(2078) 评论(6)  编辑  收藏

评论

# re: 宇宙的标尺——Ia型超新星 2007-04-05 09:52 山风小子
真漂亮 :)  回复  更多评论
  

# re: 宇宙的标尺——Ia型超新星 2011-06-21 23:06 lll
用地球自转也可以解释水槽漩涡的形成,感觉lz关于角动量守恒的那个比喻不太恰当。  回复  更多评论
  

# re: 宇宙的标尺——Ia型超新星[未登录] 2011-07-10 02:21 aa
讲解的不错。不过从仅有的几个回复来看,我猜对于没有物理专业背景或非天文爱好者来说这种叙述方式还是很难被接受。举最简单的例子:博主引用1994d的图片,1.没有告知读者那是一张假想图或合成图(文中引用的图片皆为假想图,诚然这种漂亮的图片有一定的理论和观测依据,可是你不提一下,有多少观众们会以为那是望远镜或空间探测器实际拍摄到的图像啊);2.没有引用出处(这就有点不专业了);3.这张图片中主体、背景不明确,很多人看了可能会以为图片正中央的涡旋星系发光的核心就是1994d(其实是左下角的亮点);4.专业术语没有解释,当然这个就比较麻烦了。另外既然讲到超新星,特别是做为标准烛光的Ia型超新星,文中没有提到SN 1972e令人稍感不解。总之,无论从专业角度还是科普范畴来说,如果您不仅仅是想“炫一炫”这些令人着迷的知识,而是希望更多的人了解宇宙的结构和演化过程,那么博文能够更多考虑到大多数读者的领悟能力就更好了。  回复  更多评论
  

# re: 宇宙的标尺——Ia型超新星[未登录] 2011-07-10 02:30 aa
我是先入为主的把您当作一位专业天文学研究人士而说了上面这些评论的---如果您不是,大可不必理会。呵呵  回复  更多评论
  

# re: 宇宙的标尺——Ia型超新星 2011-10-05 23:56 耗子
确实是这个意思,可怕的宇宙可能是上帝的游戏或我们作为人(假设的科学人)的唯心(望远镜视觉只是泡泡的五彩)。  回复  更多评论
  

# re: 宇宙的标尺——Ia型超新星 2011-10-15 15:20 刘学军
万有引力也有速度,他的速度与光速相同,举例说明:如果太阳消失了,地球要在8分钟后才能沿着轨道切线飞出去,而不是太阳消失的同时就会飞出去  回复  更多评论
  


只有注册用户登录后才能发表评论。


网站导航:
 
GitHub |  开源中国社区 |  maven仓库 |  文件格式转换