这厮

observing

  BlogJava :: 首页 :: 联系 :: 聚合  :: 管理
  48 Posts :: 3 Stories :: 3 Comments :: 0 Trackbacks

1. Introduction

(Note: There are two versions of this paper -- a longer full version and a shorter printed version. The full version is available on the web and the conference CD-ROM.) 
The web creates new challenges for information retrieval. The amount of information on the web is growing rapidly, as well as the number of new users inexperienced in the art of web research. People are likely to surf the web using its link graph, often starting with high quality human maintained indices such as Yahoo! or with search engines. Human maintained lists cover popular topics effectively but are subjective, expensive to build and maintain, slow to improve, and cannot cover all esoteric topics. Automated search engines that rely on keyword matching usually return too many low quality matches. To make matters worse, some advertisers attempt to gain people's attention by taking measures meant to mislead automated search engines. We have built a large-scale search engine which addresses many of the problems of existing systems. It makes especially heavy use of the additional structure present in hypertext to provide much higher quality search results. We chose our system name, Google, because it is a common spelling of googol, or 10100 and fits well with our goal of building very large-scale search engines.

1.1 Web Search Engines -- Scaling Up: 1994 - 2000

Search engine technology has had to scale dramatically to keep up with the growth of the web. In 1994, one of the first web search engines, the World Wide Web Worm (WWWW) [McBryan 94] had an index of 110,000 web pages and web accessible documents. As of November, 1997, the top search engines claim to index from 2 million (WebCrawler) to 100 million web documents (from Search Engine Watch). It is foreseeable that by the year 2000, a comprehensive index of the Web will contain over a billion documents. At the same time, the number of queries search engines handle has grown incredibly too. In March and April 1994, the World Wide Web Worm received an average of about 1500 queries per day. In November 1997, Altavista claimed it handled roughly 20 million queries per day. With the increasing number of users on the web, and automated systems which query search engines, it is likely that top search engines will handle hundreds of millions of queries per day by the year 2000. The goal of our system is to address many of the problems, both in quality and scalability, introduced by scaling search engine technology to such extraordinary numbers.

1.2. Google: Scaling with the Web

Creating a search engine which scales even to today's web presents many challenges. Fast crawling technology is needed to gather the web documents and keep them up to date. Storage space must be used efficiently to store indices and, optionally, the documents themselves. The indexing system must process hundreds of gigabytes of data efficiently. Queries must be handled quickly, at a rate of hundreds to thousands per second.

These tasks are becoming increasingly difficult as the Web grows. However, hardware performance and cost have improved dramatically to partially offset the difficulty. There are, however, several notable exceptions to this progress such as disk seek time and operating system robustness. In designing Google, we have considered both the rate of growth of the Web and technological changes. Google is designed to scale well to extremely large data sets. It makes efficient use of storage space to store the index. Its data structures are optimized for fast and efficient access (see section 4.2). Further, we expect that the cost to index and store text or HTML will eventually decline relative to the amount that will be available (see Appendix B). This will result in favorable scaling properties for centralized systems like Google.

1.3 Design Goals

1.3.1 Improved Search Quality

Our main goal is to improve the quality of web search engines. In 1994, some people believed that a complete search index would make it possible to find anything easily. According to Best of the Web 1994 -- Navigators,  "The best navigation service should make it easy to find almost anything on the Web (once all the data is entered)."  However, the Web of 1997 is quite different. Anyone who has used a search engine recently, can readily testify that the completeness of the index is not the only factor in the quality of search results. "Junk results" often wash out any results that a user is interested in. In fact, as of November 1997, only one of the top four commercial search engines finds itself (returns its own search page in response to its name in the top ten results). One of the main causes of this problem is that the number of documents in the indices has been increasing by many orders of magnitude, but the user's ability to look at documents has not. People are still only willing to look at the first few tens of results. Because of this, as the collection size grows, we need tools that have very high precision (number of relevant documents returned, say in the top tens of results). Indeed, we want our notion of "relevant" to only include the very best documents since there may be tens of thousands of slightly relevant documents. This very high precision is important even at the expense of recall (the total number of relevant documents the system is able to return). There is quite a bit of recent optimism that the use of more hypertextual information can help improve search and other applications [Marchiori 97] [Spertus 97] [Weiss 96] [Kleinberg 98]. In particular, link structure [Page 98] and link text provide a lot of information for making relevance judgments and quality filtering. Google makes use of both link structure and anchor text (see Sections 2.1 and 2.2).

1.3.2 Academic Search Engine Research

Aside from tremendous growth, the Web has also become increasingly commercial over time. In 1993, 1.5% of web servers were on .com domains. This number grew to over 60% in 1997. At the same time, search engines have migrated from the academic domain to the commercial. Up until now most search engine development has gone on at companies with little publication of technical details. This causes search engine technology to remain largely a black art and to be advertising oriented (seeAppendix A). With Google, we have a strong goal to push more development and understanding into the academic realm.

Another important design goal was to build systems that reasonable numbers of people can actually use. Usage was important to us because we think some of the most interesting research will involve leveraging the vast amount of usage data that is available from modern web systems. For example, there are many tens of millions of searches performed every day. However, it is very difficult to get this data, mainly because it is considered commercially valuable.

Our final design goal was to build an architecture that can support novel research activities on large-scale web data. To support novel research uses, Google stores all of the actual documents it crawls in compressed form. One of our main goals in designing Google was to set up an environment where other researchers can come in quickly, process large chunks of the web, and produce interesting results that would have been very difficult to produce otherwise. In the short time the system has been up, there have already been several papers using databases generated by Google, and many others are underway. Another goal we have is to set up a Spacelab-like environment where researchers or even students can propose and do interesting experiments on our large-scale web data.

source: http://infolab.stanford.edu/~backrub/google.html

posted on 2012-02-04 20:42 cnbarry 阅读(362) 评论(0)  编辑  收藏 所属分类: Site Read

只有注册用户登录后才能发表评论。


网站导航: