无为

无为则可为,无为则至深!

  BlogJava :: 首页 :: 联系 :: 聚合  :: 管理
  190 Posts :: 291 Stories :: 258 Comments :: 0 Trackbacks

第六章          总结和讨论

 

6.1.         总结 ...

6.2.         讨论 ...

6.1.                总结

信息抽取是近十年来新发展起来的领域。 MUC 等国际研讨会给予高度关注,并提出了评价这类系统的方法,定义了评价指标体系。

信息抽取技术的研究对象包括结构化、半结构化和自由式文档。对于自由式文档,多数采用了自然语言处理的方法,而其他两类文档的处理则多数是基于分隔符的。

网页是信息抽取技术研究的重点之一。通常用分装器从一特定网站上抽取信息。用一系列能处理不同网站的分装器就能将数据统一表示,并获得它们之间的关系。

分装器的建造通常是费事费力的,而且需要专门知识。加上网页动态变化,维护分装器的成本将很高。因此,如何自动构建分装器便成为主要的问题。通常采用的方法包括基于归纳学习的机器学习方法。

有若干研究系统被开发出来。这些系统使用机器学习算法针对网上信息源生成抽取规则。 ShopBot WIEN SoftMealy STALKER 生成的分装器以分隔符为基础,能处理结构化程度高的网站。 RAPIER WHISK SRV 能处理结构化程度稍差的信息源。所采用的抽取方法与传统的 IE 方法一脉相承,而学习算法多用关系学习法。

网站信息抽取和分装器生成技术可在一系列的应用领域内发挥作用。目前只有比价购物方面的商业应用比较成功,而最出色的系统包括 Jango Junglee MySimon

6.2.                 讨论

目前的搜索引擎并不能收集到网上数据库内的信息。根据用户的查询请求,搜索引擎能找到相关的网页,但不能把上面的信息抽取出来。“暗藏网”不断增加,因此有必要开发一些工具把相关信息从网页上抽取并收集起来。

由于网上信息整合越来越重要,虽然网站信息抽取的研究比较新,但将不断发展。机器学习方法的使用仍将成为主流方法,因为处理动态的海量信息需要自动化程度高的技术。在文献 [52] 中提出,结合不同类型的方法,以开发出适应性强的系统,这应是一个有前途的方向。在文献 [36] 中,一种混合语言知识和句法特征的方法也被提出来。

本文介绍的系统多数是针对 HTML 文档的。以后几年 XML 的使用将被普及。 HTML 描述的是文档的表现方式,是文档的格式语言。 XML 则可以告诉你文档的意义,即定义内容而不只是形式。这虽然使分装器的生成工作变得简单,但不能排除其存在的必要性。

将来的挑战是建造灵活和可升级的分装器自动归纳系统,以适应不断增长的动态网络的需要。

参考文献

 

[1]  S. Abiteboul.

Querying Semistructured Data.

Proceedings of the International Conference on Database Theory (ICDT), Greece,

January 1997.

[2] B. Adelberg.

NoDoSE - A tool for Semi-Automatically Extracting Semistructured Data from Text

Documents.

Proceedings ACM SIGMOD International Conference on Management of Data, Seat-

tle, June 1998.

[3] D. E. Appelt, D. J. Israel.

Introduction to Information Extraction Technology.

Tutorial for IJCAI-99, Stockholm, August 1999.

[4] N. Ashish, C. A. Knoblock.

Semi-automatic Wrapper Generation for Internet Information Sources.

Second IFCIS Conference on Cooperative Information Systems (CoopIS), South Car-

olina, June 1997.

[5] N. Ashish, C. A. Knoblock.

Wrapper Generation for semistructured Internet Sources.

SIGMOD Record, Vol. 26, No. 4, pp. 8--15, December 1997.

[6] P. Atzeni, G. Mecca.

Cut & Paste.

Proceedings of the 16'th ACM SIGACT-SIGMOD-SIGART Symposium on Principles

of Database Systems (PODS'97), Tucson, Arizona, May 1997.

[7] M. Bauer, D. Dengler.

TrIAs - An Architecture for Trainable Information Assistants.

Workshop on AI and Information Integration, in conjunction with the 15'th National

Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, July 1998.

[8] P. Berka.

Intelligent Systems on the Internet.

http://lisp.vse.cz/ berka/ai-inet.htm, Laboratory of Intelligent Systems, University

of Economics, Prague.

[9] L. Bright, J. R. Gruser, L. Raschid, M. E. Vidal.

A Wrapper Generation Toolkit to Specify and Construct Wrappers for Web Accessible

Data Sources (WebSources).

Computer Systems Special Issue on Semantics on the WWW, Vol. 14 No. 2, March

1999.

[10] S. Brin.

Extracting Patterns and Relations from the World Wide Web.

International Workshop on the Web and Databases (WebDB'98), Spain, March 1998.

[11] M. E. Califf, R. J. Mooney.

Relational Learning of Pattern-Match Rules for Information Extraction.

Proceedings of the ACL Workshop on Natural Language Learning, Spain, July 1997.

[12] M. E. Califf.

Relational Learning Techniques for Natural Language Information Extraction.

Ph.D. thesis, Department of Computer Sciences, University of Texas, Austin, August

1998. Technical Report AI98-276.

[13] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J.

Ullman, J. Widom.

The TSIMMIS Project: Integration of Heterogeneous Information Sources.

In Proceedings of IPSJ Conference, pp. 7--18, Tokyo, Japan, October 1994.

[14] B. Chidlovskii, U. M. Borghoff, P-Y. Chevalier.

Towards Sophisticated Wrapping of Web-based Information Repositories.

Proceedings of the 5'th International RIAO Conference, Montreal, Quebec, June 1997.

[15] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, S. Slattery.

Learning to Extract Symbolic Knowledge from the World Wide Web.

Proceedings of the 15'th National Conference on Artificial Intelligence (AAAI-98),

Madison , Wisconsin , July 1998.

[16] M. Craven, S. Slattery, K. Nigam.

First-Order Learning for Web Mining.

Proceedings of the 10'th European Conference on Machine Learning, Germany, April

1998.

[17] R. B. Doorenbos, O. Etzioni, D. S. Weld.

A Scalable Comparison-Shopping Agent for the World Wide Web.

Technical report UW-CSE-96-01-03, University of Washington, 1996.

[18] R. B. Doorenbos, O. Etzioni, D. S. Weld.

A Scalable Comparison-Shopping Agent for the World-Wide-Web.

Proceedings of the first International Conference on Autonomous Agents, California,

February 1997.

[19] O. Etzioni

Moving up the Information Food Chain: Deploying Softbots on the World Wide Web.

AI Magazine, 18(2):11-18, 1997.

[20] D. Florescu, A. Levy, A. Mendelzon.

Database Techniques for the World Wide Web: A Survey.

ACM SIGMOD Record, Vol. 27, No. 3, September 1998.

[21] D. Freitag.

Information Extraction from HTML: Application of a General Machine Learning Ap-

proach.

Proceedings of the 15'th National Conference on Artificial Intelligence (AAAI-98),

Madison , Wisconsin , July 1998.

[22] D. Freitag.

Machine Learning for Information Extraction in Informal Domains.

Ph.D. dissertation, CarnegieMellonUniversity, November 1998.

[23] D. Freitag.

Multistrategy Learning for Information Extraction.

Proceedings of the 15'th International Conference on Machine Learning (ICML-98),

Madison , Wisconsin , July 1998.

[24] R. Gaizauskas, Y. Wilks.

Information Extraction: Beyond Document Retrieval.

Computational Linguistics and Chinese Language Processing, vol. 3, no. 2, pp. 17--60,

August 1998,

[25] H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ullman, J.

Widom.

Integrating and Accessing Heterogeneous Information Sources in TSIMMIS.

In Proceedings of the AAAI Symposium on Information Gathering, pp. 61--64, Stan-

ford, California, March 1995.

[26] S. Grumbach and G. Mecca.

In Search of the Lost Schema.

Proceedings of the International Conference on Database Theory (ICDT'99),

Jerusalem , January 1999.

[27] J-R. Gruser, L. Raschid, M. E. Vidal, L. Bright.

Wrapper Generation for Web Accessible Data Source.

Proceedings of the 3'rd IFCIS International Conference on Cooperative Information

Systems (CoopIS-98), New York, August 1998.

[28] J. Hammer, H. Garcia-Molina, J. Cho, R. Aranha, A. Crespo.

Extracting Semistructured Information from Web.

Proceedings of the Workshop on Management of Semistructured Data, Tucson, Ari-

zona, May 1997.

[29] J. Hammer, H. Garcia-Molina, S. Nestorov, R. Yerneni, M. Breunig, V. Vassalos.

Template-Based Wrappers in the TSIMMIS System.

Proceedings of the 26'th SIGMOD International Conference on Management of Data,

Tucson , Arizona , May 1997.

[30] C-H. Hsu.

Initial Results on Wrapping Semistructured Web Pages with Finite-State Transducers

and Contextual Rules.

Workshop on AI and Information Integration, in conjunction with the 15'th National

Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, July 1998.

[31] C-H. Hsu and M-T Dung.

Generating Finite-Sate Transducers for semistructured Data Extraction From the

Web.

Information systems, Vol 23. No. 8, pp. 521--538, 1998.

[32] C. A. Knoblock, S. Minton, J. L. Ambite, N. Ashish, P. J. Modi, I. Muslea, A. G.

Philpot, S. Tejada.

Modeling Web Sources for Information Integration.

Proceedings of the 15'th National Conference on Artificial Intelligence (AAAI-98),

Madison , Wisconsin , July 1998.

[33] N. Kushmerick, D. S. Weld, R. Doorenbos.

Wrapper Induction for Information Extraction.

15'th International Joint Conference on Artificial Intelligence (IJCAI-97), Nagoya,

August 1997.

[34] N. Kushmerick.

Wrapper Induction for Information Extraction.

Ph.D. Dissertation, University of Washington. Technical Report UW-CSE-97-11-04,

1997.

[35] N. Kushmerick.

Wrapper induction: Efficiency and expressiveness.

Workshop on AI and Information Integration, in conjunction with the 15'th National

Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, July 1998.

[36] Kushmerick, N.

Gleaning the Web.

IEEE Intelligent Systems, 14(2), March/April 1999.

[37] S. Lawrence, C.l. Giles.

Searching the World Wide Web.

Science magazine, v. 280, pp. 98--100, April 1998.

[38] A. Y. Levy, A. Rajaraman, J. J. Ordille.

Querying Hetereogeneous Information Sources Using Source Descriptions.

Proceedings 22'nd VLDB Conference, Bombay, September 1996.

[39] S. Muggleton, C. Feng.

Efficient Induction of Logic Programs.

Proceedings of the First Conference on Algorithmic Learning Theory, New York,

1990.

[40] I. Muslea.

Extraction Patterns: From Information Extraction to Wrapper Induction.

Information Sciences Institute, University of Southern California, 1998.

[41] I. Muslea.

Extraction Patterns for Information Extraction Tasks: A Survey.

Workshop on Machine Learning for Information Extraction, Orlando, July 1999.

[42] I. Muslea, S. Minton, C. Knoblock.

STALKER: Learning Extraction Rules for Semistructured, Web-based Information

Sources.

Workshop on AI and Information Integration, in conjunction with the 15'th National

Conference on Artificial Intelligence (AAAI-98), Madison, Wisconsin, July 1998.

[43] I. Muslea, S. Minton, C. Knoblock.

Wrapper Induction for Semistructured Web-based Information Sources.

Proceedings of the Conference on Automatic Learning and Discovery CONALD-98,

Pittsburgh , June 1998.

[44] I. Muslea, S. Minton, C. Knoblock.

A Hierarchical Approach to Wrapper Induction.

Third International Conference on Autonomous Agents, (Agents'99), Seattle, May

1999.

[45] S. Nestorov, S. Aboteboul, R. Motwani.

Inferring Structure in Semistructured Data.

Proceedings of the 13'th International Conference on Data Engineering (ICDE'97),

Birmingham , England , April 1997.

[46] STS Prasad, A. Rajaraman.

Virtual Database Technology, XML, and the Evolution of the Web.

Data Engineering, Vol. 21, No. 2, June 1998.

[47] J.R. Quinlan, R. M. Cameron-Jones.

FOIL: A Midterm Report.

European Conference on Machine Learning, Vienna, Austria, 1993.

[48] A. Rajaraman.

Transforming the Internet into a Database.

Workshop on Reuse of Web information, in conjunction with WWW7, Brisbane, April

1998.

[49] A. Sahuguet, F. Azavant.

WysiWyg Web Wrapper Factory (W4f).

http://cheops.cis.upenn.edu/ sahuguet/WAPI/wapi.ps.gz, University of Pennsylva-

nia, August 1998.

[50] D. Smith, M. Lopez.

Information Extraction for Semistructured Documents.

Proceedings of the Workshop on Management of Semistructured Data, in conjunction

with PODS/SIGMOD, Tucson, Arizona, May 1997.

[51] S. Soderland.

Learning to Extract Text-based Information from the World Wide Web.

Proceedings of the 3'rd International Conference on Knowledge Discovery and Data

Mining (KDD), California, August 1997.

[52] S. Soderland.

Learning Information Extraction Rules for Semistructured and Free Text.

Machine Learning, 1999.

[53] K. Zechner.

A Literature Survey on Information Extraction and Text Summarization.

Term paper, CarnegieMellonUniversity, 1997.

[54] About mySimon.

http://www.mysimon.com/about mysimon/company/backgrounder.anml



凡是有该标志的文章,都是该blog博主Caoer(草儿)原创,凡是索引、收藏
、转载请注明来处和原文作者。非常感谢。

posted on 2007-01-01 15:19 草儿 阅读(1667) 评论(0)  编辑  收藏 所属分类: ajaxWeb Data Mining

只有注册用户登录后才能发表评论。


网站导航: