对一块3行7列的长方形阵列中的小方格的每一格任意染成黑色或白色,求证:在这个长方形中,一定有一个由小方格组成的长方形,它的四个角上的小方格同色。
证法1:每一列的三个格用黑、白两种颜色染色.所有可能的染法只有如下图中的八种


如果在所染色的3行7列阵列中某一列是第(1)种方式,即三格均为白色,则其余6列中只要再有第(1)(2)(3)(4)种方式之一(即该列中至少有两个白格),那么显然存在一个四角格都是白色的长方形.若第(1)、(2)、(3)、(4)种方式均未出现,那么其余6列就只能是(5)、(6)、(7)、(8)这四种方式,根据抽屉原理,其中至少有两列染色方式完全一样.又(5)~(8)中每一列至少有两格染黑色,所以一定存在一个长方形,它的四角格颜色都是黑色。
同理可知,如果有一列是第(8)种方式,即三格均为黑色,那么也存在四角同色的长方形。
如果在7列中(1)、(8)两种方式都未出现,则只有(2)、(3)、(4)、(5)、(6)、(7)这六种方式染这7列,根据抽屉原理,至少有两列染色方式完全一样,所以仍然存在四角同色的长方形。
证法2:第一行有7个小方格,用黑白两种颜色去染,根据抽屉原理,至少有四个方格所染颜色相同,不妨设第一行有4个黑方格.再看第二行,如果在第一行的四个黑方格下面的四格中有两格是黑色,则结论显然成立.否则第二行这四个格中至少有3个白色方格。
再看第三行.根据抽屉原理,在第三行的位于第二行的3个白格下面的3个格中必至少有两格同色.如果有两格为白色,则与第二行构成四角白色的长方形;如果没有两格白色,那么必有两格为黑色,则与第一行构成四角黑色的长方形。